Skip to main content

Cyclooxygenase 2 (COX2) and Peroxisome Proliferator-Activated Receptor Gamma (PPARG) Are Stage-Dependent Prognostic Markers of Malignant Melanoma

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Abstract

COX2 and PPARG are differentially expressed in many human tumors and have emerged as potential targets of biomodulatory cancer therapy. Using three tissue microarrays (TMA) we studied the correlation of COX2/PPARG immunoreactivity in a broad spectrum of tumors focussing on the correlation between clinico-pathologic features and outcome of patients with malignant melanoma (MM).

TMA-1 consisted of normal and tumor tissues (n = 3,448) from 47 organs and tissue entities including skin neoplasms (n = 323) of melanocytic (MM, benign nevi) and non-melanocytic origin (squamous cell carcinomas, basal cell ­carcinomas, Kaposi sarcomas, histiocytomas, capillary hemangiomas, sebaceous adenomas). TMA-2 consisted of 88 MM with follow-up data, 101 MM metastases and 161 benign nevi. TMA-3 (n = 194) consisted of MM metastases from 36 patients with metastatic stage IV melanoma who had participated in a randomized phase II trial using a stroma-directed biomodulatory approach combining COX/PPAR-targeting with metronomic low-dose chemotherapy.

COX2 immunoreactivity significantly increased from benign nevi (51%) to ­primary MM (86%) and MM metastases (91%; P < 0.001, TMA-2). In case of primary MM, positive COX2 staining was associated with advanced Clark levels (P= 0.004) and shorter recurrence free survival (P= 0.03). Similarly, PPARG immunoreactivity was significantly increasing from benign nevi (0%) to MM (22%) and MM metastases (33%; P< 0.001). However, PPARG expression in ­primary MM was not associated with any of the clinico-pathologic characteristics or tumor progression and overall survival. On the other hand, patients with PPARG-positive MM metastases who had been treated either with biomodulatory metronomic chemotherapy (trofosfamide) alone or combined with COX2/PPARG-targeting drugs, i.e. rofecoxib and pioglitazone, showed a significant advantage concerning progression-free survival (P= 0.044).

We conclude that the expression of COX2 and PPARG is a frequent finding in the progression of MM. Regarding primary MM, the expression of COX2 indicates an increased risk of tumor recurrence, i.e. melanoma progression. In metastatic MM the expression of PPARG may serve as positive predictive marker of potential responsiveness to biomodulatory stroma-targeted therapy (Meyer S, Vogt T, Landthaler M, et al (2009). Cyclooxygenase 2 (COX2) and Peroxisome Proliferator-Activated Receptor Gamma (PPARG) Are Stage-Dependent Prognostic Markers of Malignant Melanoma. PPAR Res 2009: 848645).

*Both authors contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MM:

Malignant melanoma

TMA:

Tissue microarray

IHC:

Immunohistochemistry

COX2:

Cyclooxygenase 2

PPARG:

Peroxisome proliferator-activated receptor gamma

References

  1. Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 89:7384–7388.

    Article  PubMed  CAS  Google Scholar 

  2. Dannenberg AJ, Altorki NK, Boyle JO, et al (2001) Inhibition of cyclooxygenase-2: an approach to preventing cancer of the upper aerodigestive tract. Ann N Y Acad Sci 952:109–115.

    Article  PubMed  CAS  Google Scholar 

  3. Thun MJ, Henley SJ, Gansler T (2008) Inflammation and cancer: an epidemiological perspective. Novartis Found Symp 256:6–21; discussion 28, 49–52, 266–269.

    Google Scholar 

  4. Bucher C, Jordan P, Nickeleit V, et al (1999) Relative risk of malignant tumors in analgesic abusers. Effects of long-term intake of aspirin. Clin Nephrol 51:67–72.

    PubMed  CAS  Google Scholar 

  5. Oshima M, Murai N, Kargman S, et al (2001) Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 61:1733–1740.

    PubMed  CAS  Google Scholar 

  6. Denkert C, Kobel M, Berger S, et al (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–8.

    PubMed  CAS  Google Scholar 

  7. Lee C, Ramirez JA, Guitart J, et al (2008) Expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor gamma during malignant melanoma progression. J Cutan Pathol 35:989–994.

    Article  PubMed  Google Scholar 

  8. Buckman SY, Gresham A, Hale P, et al (1998) COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19:723–729.

    Article  PubMed  CAS  Google Scholar 

  9. Nijsten T, Geluyckens E, Colpaert C, et al (2005) Peroxisome proliferator-activated receptors in squamous cell carcinoma and its precursors. J Cutan Pathol 32:340–347.

    Article  PubMed  Google Scholar 

  10. Koeffler HP et al (2003) Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 9:1–9.

    PubMed  CAS  Google Scholar 

  11. Mueller E, Smith M, Sarraf P, et al (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97:10990–10995.

    Article  PubMed  CAS  Google Scholar 

  12. Subbarayan V, Sabichi AL, Kim J, et al (2004) Differential peroxisome proliferator-activated receptor-gamma isoform expression and agonist effects in normal and malignant prostate cells. Cancer Epidemiol Biomarkers Prev 13:1710–1716.

    PubMed  CAS  Google Scholar 

  13. Mueller E, Sarraf P, Tontonoz P, et al (1998). Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang GY, Ahmed N, Riley C, et al (2005) Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma. Br J Cancer 92:113–119.

    Article  PubMed  CAS  Google Scholar 

  15. Stadlmann S, Gueth U, Wight E, et al (2007) Expression of peroxisome proliferator activated receptor gamma and cyclo-oxygenase 2 in primary and recurrent ovarian carcinoma. J Clin Pathol 60:307–310.

    Article  PubMed  CAS  Google Scholar 

  16. Hazra S, Peebles KA, Sharma S, et al (2008) The role of PPARgamma in the Cyclooxygenase pathway in lung cancer. PPAR Res 2008:790568.

    Article  PubMed  Google Scholar 

  17. DuBois RN, Gupta R, Brockman J, et al (1998) The nuclear eicosanoid receptor, PPARgamma, is aberrantly expressed in colonic cancers. Carcinogenesis 19:49–53.

    Article  PubMed  CAS  Google Scholar 

  18. Grommes C, Landreth GE, Heneka MT (2008) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429.

    Article  Google Scholar 

  19. Placha W, Gil D, Dembinska-Kiec A, et al (2003) The effect of PPARgamma ligands on the proliferation and apoptosis of human melanoma cells. Melanoma Res 13:447–456.

    Article  PubMed  CAS  Google Scholar 

  20. Freudlsperger C, Moll I, Schumacher U, et al (2006) Anti-proliferative effect of peroxisome proliferator-activated receptor gamma agonists on human malignant melanoma cells in vitro. Anticancer Drugs 17:325–332.

    Article  PubMed  CAS  Google Scholar 

  21. Hafner C, Reichle A, Vogt T (2005) New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR anta-gonists and metronomic chemotherapy. Curr Cancer Drug Targets 5:393–419.

    Article  PubMed  CAS  Google Scholar 

  22. Reichle A, Vogt T, Coras B, et al (2007) Targeted combined anti-inflammatory and angiostatic therapy in advanced melanoma: a randomized phase II trial. Melanoma Res 17:360–364.

    Article  PubMed  CAS  Google Scholar 

  23. Reichle A, Bross K, Vogt T, et al (2004) Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 101:2247–2256.

    Article  PubMed  CAS  Google Scholar 

  24. Simon R, Nocito A, Hubscher T, et al (2001) Patterns of her-2/neu amplification and over-expression in primary and metastatic breast cancer. J Natl Cancer Inst 93:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  25. Bubendorf L, Nocito A, Moch H, et al (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195:72–79.

    Article  PubMed  CAS  Google Scholar 

  26. Wild PJ, Meyer S, Bataille F, et al (2006) Tissue microarray analysis of methylthioadenosine phosphorylase protein expression in melanocytic skin tumors. Arch Dermatol 142:471–476.

    Article  PubMed  CAS  Google Scholar 

  27. Nocito A, Bubendorf L, Maria Tinner E, et al (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194:349–357.

    Article  PubMed  CAS  Google Scholar 

  28. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047.

    Article  PubMed  CAS  Google Scholar 

  29. Hofmeister V, Schrama D, Becker JC (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 57:1–17.

    Article  PubMed  CAS  Google Scholar 

  30. Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, et al (2006) PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 132:76–84.

    Article  PubMed  CAS  Google Scholar 

  31. Inoue H, Tanabe T, Umesono K (2000) Feedback control of cyclooxygenase-2 expression through PPARgamma. J Biol Chem 275:28028–28032.

    PubMed  CAS  Google Scholar 

  32. Ikawa H, Kameda H, Kamitani H, et al (2001) Effect of PPAR activators on cytokine-stimulated cyclooxygenase-2 expression in human colorectal carcinoma cells. Exp Cell Res 267:73–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Frank van Rey, Lydia Kuenzel and Rudolf Jung for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Wild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Meyer, S. et al. (2010). Cyclooxygenase 2 (COX2) and Peroxisome Proliferator-Activated Receptor Gamma (PPARG) Are Stage-Dependent Prognostic Markers of Malignant Melanoma. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_22

Download citation

Publish with us

Policies and ethics