Skip to main content

Angiogenesis, the Neurovascular Niche and Neuronal Reintegration After Injury

  • Chapter
  • First Online:
Therapeutic Angiogenesis for Vascular Diseases
  • 761 Accesses

Abstract

Injury to the central nervous system caused by traumatic brain and/or spinal cord injury, stroke, autoimmune and neurodegenerative diseases and hypoxia all evoke a repair process involving angio-genesis and neuro-genesis. Optimal structural and functional recovery is dependent upon a coupled angio- and neuro-genesis, which occur in specific neurogenic zones in the Central Nervous System (CNS). This coupled response is thought to provide the individual with the cellular elements that effect repair and ultimately clinical improvement. However, only some affected individuals survive and exhibit evidence of clinical improvement following these injuries/disease states and the improvement is variable. A more complete understanding of the cell biology of the cells comprising this niche and their dynamic interactions with each other and the surrounding extracellular matrix is crucial to our ability to beneficially intervene therapeutically to increase the percentage of affected individuals surviving and exhibiting clinical improvement and the extent of their improvement. In this chapter we discuss the importance of biocompatible engineered scaffolds that mimic the structural and functional properties of the CNS neurogenic zones in developing tissue culture and animal models which will allow a better, more detailed understanding of cell-cell and cell-matrix interactions crucial for maintenance of niche cell proliferation, apoptosis, migration and differentiation and the ultimate development of implantable stem cell containing scaffolds as a therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S (2009) The culture of neural stem cells. J Cell Biochem 106:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335.

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–389.

    Article  PubMed  CAS  Google Scholar 

  • Anseth KS, Metters AT, et al. (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Controlled Release 78:199–209.

    Article  CAS  Google Scholar 

  • Balgude A, Yu X, et al. (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084.

    Article  PubMed  CAS  Google Scholar 

  • Bearden SE, Segal SS (2005) Neurovascular alignment in adult mouse skeletal muscles. Microcirculation 12:161–167.

    Article  PubMed  Google Scholar 

  • Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117:481–496.

    Article  PubMed  Google Scholar 

  • Bentz K, Molcanyi M, et al. (2006) Neural differentiation of embryonic stem cells is induced by signalling from non-neural niche cells. Cell Physiol Biochem 18:275–286.

    Article  PubMed  CAS  Google Scholar 

  • Blake SM, Strasser V, et al. (2008) Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 27:3069–3080.

    Article  PubMed  CAS  Google Scholar 

  • Bovetti S, Hsieh YC, et al. (2007) Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J Neurosci 27:5976–5980.

    Article  PubMed  CAS  Google Scholar 

  • Burdick JA, Chung C, et al. (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6:386–391.

    Article  PubMed  CAS  Google Scholar 

  • Campos LS (2004) Neurospheres: Insights into neural stem cell biology. J Neurosci Res 78: 761–769.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang C, et al. (2005) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab 25:281–290.

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Ha Y, et al. (2007) Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. J Neurosurg Spine 7:54–60.

    Article  PubMed  Google Scholar 

  • Chow J, Ogunshola O, et al. (2001) Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Res Dev Brain Res 130:123–132.

    Article  PubMed  CAS  Google Scholar 

  • Curristin SM, Cao A, et al. (2002) Disrupted synaptic development in the hypoxic newborn brain. Proc Natl Acad Sci USA 99:15729–15734.

    Article  PubMed  CAS  Google Scholar 

  • Currle DS, Gilbertson RJ (2008) The niche revealed. Cell Stem Cell 3:234–236.

    Article  PubMed  CAS  Google Scholar 

  • Dar A, Shachar M, et al. (2002) Cardiac tissue engineering – Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Flores LJ, Gutierrez R, et al. (2009) Adult stem cells and repair through granulation tissue. Front Biosci 14:1433–1470.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550.

    Article  PubMed  CAS  Google Scholar 

  • Dusseault J, Tam SK, et al. (2006) Evaluation of alginate purification methods: Effect on polyphenol, endotoxin, and protein contamination. J Biomed Mater Res A 76A:243–251.

    Article  CAS  Google Scholar 

  • Edamura K, Nasu K, et al. (2003) Effect of adhesion or collagen molecules on cell attachment, insulin secretion, and glucose responsiveness in the cultured adult porcine endocrine pancreas: A preliminary study. Cell Transplant 12:439–446.

    PubMed  Google Scholar 

  • Elsdale T, Bard, J (1972) Collagen substrata for studies on cell behavior. J Cell Biol 54:626–633.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317.

    Article  PubMed  CAS  Google Scholar 

  • Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532.

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Baptiste DC (2005) Current status of clinical trials for acute spinal cord injury. Injury Int J Care Injured 36:113–122.

    Google Scholar 

  • Ford MC, Bertram JP, et al. (2006) A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc Natl Acad Sci USA 103:2512–2517.

    Article  PubMed  CAS  Google Scholar 

  • Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Gama Sosa MA, De Gasperi R, et al. (2007) Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact. Cell Res 17:619–626.

    Article  PubMed  CAS  Google Scholar 

  • Garcion E, Halilagic A, et al. (2004) Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. Development 131:3423–3432.

    Article  PubMed  CAS  Google Scholar 

  • Georges PC, Miller WJ, et al. (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–3018.

    Article  PubMed  CAS  Google Scholar 

  • Gotts JE, Chesselet, MF (2005a) Mechanisms of subventricular zone expansion after focal cortical ischemic injury. J Comp Neurol 488:201–214.

    Article  PubMed  Google Scholar 

  • Gotts JE, Chesselet, MF (2005b) Migration and fate of newly born cells after focal cortical ischemia in adult rats. J Neurosci Res 80:160–171.

    Article  PubMed  CAS  Google Scholar 

  • Gotts JE, Chesselet, MF (2005c) Vascular changes in the subventricular zone after distal cortical lesions. Exp Neurol 194:139–150.

    Article  PubMed  Google Scholar 

  • Hahn S, Hoffman A (2005) Preparation and characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-L-lysine. Int J Biol Macromol 37:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276.

    Article  PubMed  CAS  Google Scholar 

  • Horn EM, Beaumont M, et al. (2007) Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. J Neurosurg Spine 6:133–140.

    Article  PubMed  Google Scholar 

  • Hou SP, Xu QY, et al. (2005) The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods 148:60–70.

    Article  PubMed  CAS  Google Scholar 

  • Hynes SR, Rauch MF, et al. (2009) A library of tunable poly(ethylene glycol)/poly-L-lysine hydrogels to investigate the materials cues that influence neural stem cell differentiation. J Biomed Mater Res A 89:499–509.

    PubMed  Google Scholar 

  • Ishii M, Maeda N (2008) Oversulfated chondroitin sulfate plays critical roles in the neuronal migration in the cerebral cortex. J Biol Chem 283:32610–32620.

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Munn LL (2000) Leaky vessels? Call Angl1! Nat Med 6:131–132.

    Article  CAS  Google Scholar 

  • Kabos P, Matundan H, et al. (2004) Neural precursors express multiple chondroitin sulfate proteoglycans, including the lectican family. Biochem Biophys Res Commun 318:955–963.

    Article  PubMed  CAS  Google Scholar 

  • Kadam SD, Mulholland JD, et al. (2009) Poststroke subgranular and rostral subventricular zone proliferation in a mouse model of neonatal stroke. J Neurosci Res Apr 24, [Epub ahead of print].

    Google Scholar 

  • Kaplan MS (2001) Environment complexity stimulates visual cortex neurogenesis: Death of a dogma and a research career. Trends Neurosci 24:617–620.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs. Science 197:1092–1094.

    Article  PubMed  CAS  Google Scholar 

  • Kearns SM, Laywell ED, et al. (2003) Extracellular matrix effects on neurosphere cell motility. Exp Neurol 182:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Kerever A, Schnack J, et al. (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:2146–2157.

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Li Q, et al. (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546.

    Article  PubMed  CAS  Google Scholar 

  • Kokovay E, Shen Q, et al. (2008) The incredible elastic brain: how neural stem cells expand our minds. Neuron 60:420–429.

    Article  PubMed  CAS  Google Scholar 

  • Larsen M, Artym VV, et al. (2006) The matrix reorganized: Extracellular matrix remodeling and integrin signaling.Curr Opin Cell Biol 18:463–471.

    Article  PubMed  CAS  Google Scholar 

  • Lathia JD, Patto nB, et al. (2007) Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J Comp Neurol 505:630–643.

    Article  PubMed  Google Scholar 

  • Leach J, Schmidt C (2005) Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.Biomaterials 26:125–135.

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Kim WJ, et al. (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900–906.

    Article  PubMed  CAS  Google Scholar 

  • Levenberg S, Huang NF, et al. (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 100:12741–12746.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Ford MC, et al. (2006) Modeling the neurovascular niche: VEGF and BDNF mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J Neurosci Res 84: 1656–1668.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Liu J, et al. (2009) Modeling the Neurovascular Niche: Strain differences in behavioral and cellular responses to perinatal hypoxia, and relationships to neural stem cell survival and self-renewal. Am J Pathol 86:1227–1242.

    Google Scholar 

  • Li Q, Michaud M, et al. (2008) Modeling the Neurovascular Niche: Murine strain differences mimic the range of responses to chronic hypoxia in the premature newborn. J Neurosci Res 86:1227–1242.

    Article  PubMed  CAS  Google Scholar 

  • Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4:257–266.

    Article  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077.

    Article  PubMed  CAS  Google Scholar 

  • Lok J, Gupta P, et al. (2007) Cell-cell signaling in the neurovascular unit. Neurochem Res 32: 2032–2045.

    Article  PubMed  CAS  Google Scholar 

  • Louissaint A, Rao S, et al. (2002) Coordinated interaction of Neurogenesis and angiogenesis in the adult songbird brain. Neuron 34:945–960.

    Google Scholar 

  • Marijnissen W, van Osch G, et al. (2002) Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 23:1511–1517.

    Article  PubMed  CAS  Google Scholar 

  • McCarty JH (2009) Cell adhesion and signaling networks in brain neurovascular units. Curr Opin Hematol 16:209–214.

    Article  PubMed  Google Scholar 

  • Ment LR, Stewart WB, et al. (1995) Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res Dev Brain Res 84: 142–149.

    Article  PubMed  CAS  Google Scholar 

  • Ment LR, Stewart WB, et al.(1997a) Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Dev Brain Res 100:52–61.

    Article  CAS  Google Scholar 

  • Ment LR, Stewart WB, et al. (1997b) An in vitro three-dimensional coculture model of cerebral microvascular angiogenesis and differentiation. In Vitro Cell Dev Biol Anim 33: 684–691.

    Article  PubMed  CAS  Google Scholar 

  • Mercier F, Kitasako JT, et al. (2002) Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188.

    Article  PubMed  Google Scholar 

  • Miller FD, Gauthier-Fisher A (2009) Home at last: Neural stem cell niches defined. Cell Stem Cell 4:507–510.

    Article  PubMed  CAS  Google Scholar 

  • Mirzadeh Z, Merkle FT, et al. (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278.

    Article  PubMed  CAS  Google Scholar 

  • Mompeo B, Engele J, K S-B(2003) Endothelial cell influence on dorsal root ganglion cell formation. J Neurocytol 32:123–129.

    Article  PubMed  Google Scholar 

  • Nagata N, Iwanaga A, et al. (2002) Co-culture of extracellular matrix suppresses the cell death of rat pancreatic islets. J Biomater Sci Polym Ed 13:579–590.

    Article  PubMed  CAS  Google Scholar 

  • Nakagomi N, Nakagomi T, et al. (2009) Endothelial Cells Support Survival, Proliferation and Neuronal Differentiation of Transplanted Adult Ischemia-Induced Neural Stem/Progenitor Cells after Cerebral Infarction. Stem Cells June 25:Epub ahead of print.

    Google Scholar 

  • Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309.

    Article  PubMed  CAS  Google Scholar 

  • Nelson CM, Tien J (2006) Microstructured extracellular matrices in tissue engineering and development. Curr Opin Biotechnol 17:518–523.

    Article  PubMed  CAS  Google Scholar 

  • Newton SS, Duman RS (2004) Regulation of neurogenesis and angiogenesis in depression. Curr Neurovasc Res 1:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314.

    Article  PubMed  CAS  Google Scholar 

  • Nicolau DV, Taguchi T, et al. (1999) Patterning neuronal and glia cells on light-assisted functionalised photoresists. Biosens Bioelectron 14:317–325.

    Article  PubMed  CAS  Google Scholar 

  • Nikolova G, Jabs N, et.al (2006) The vascular basement membrane: A niche for insulin gene expression and beta cell proliferation. Dev Cell 10:397–405.

    Article  PubMed  CAS  Google Scholar 

  • Ogunshola OO, Antic A, et al. (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277: 11410–11415.

    Article  PubMed  CAS  Google Scholar 

  • Ohab JJ, Fleming S, et al. (2006a) A neurovascular niche for neurogenesis after stroke.J Neurosci 26:13007–13016.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Kobayashi A, et al. (2004) Angiogenesis in vitro: vascular tube formation from the differentiation of neural stem cells. J Pharmacol Sci 96:208–218.

    Article  PubMed  CAS  Google Scholar 

  • Onda T, Honmou O, et al. (2007) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab advanced online publication:1–12.

    Google Scholar 

  • Page-McCaw A, Ewald AJ, et al. (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233.

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Willhoite AR, et al. (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494.

    Article  PubMed  CAS  Google Scholar 

  • Pereira AC, Huddleston DE, et al. (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638–5644.

    Article  PubMed  CAS  Google Scholar 

  • Plaschke K, Staub J, et al. (2008) VEGF overexpression improves mice cognitive abilities after unilateral common carotid artery occlusion. Exp Neurol 214:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Prang P, Muller R, et al. (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569.

    PubMed  CAS  Google Scholar 

  • Quiñones-Hinojosa A, Chaichana K (2007) The human subventricular zone: a source of new cells and A potential source of brain tumors. Exp Neurol 205:313–324.

    Article  PubMed  Google Scholar 

  • Raab S, Plate KH (2007) Different networks, common growth factors: Shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol 113: 607–626.

    Article  PubMed  CAS  Google Scholar 

  • Raber J, Rola R, et al. (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Rauch MF, Hynes SR, et al. (2009) Engineering angiogenesis following spinal cord injury: A coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur J Neurosci 29:132–145.

    Article  PubMed  Google Scholar 

  • Rauch MF, Michaud M, et al. (2008) Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo. J Biomater Sci Polym Ed 19:1469–1485.

    Article  PubMed  CAS  Google Scholar 

  • Riquelme PA, Drapeau E, et al. (2007) Brain micro-ecologies: neural stem cell Niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 363:123–137.

    Google Scholar 

  • Roitbak T, Li L, et al. (2008) Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling. J Cereb Blood Flow Metab 28:1530–1542.

    Article  PubMed  CAS  Google Scholar 

  • Roux F, Durieu-Trautmann O, et al. (1994) Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Phys 159:101–113.

    Article  CAS  Google Scholar 

  • Sanes J, R (1983) Roles of extracellular matrix in neural development. Annu Rev Physiol 45:581–600.

    Article  PubMed  CAS  Google Scholar 

  • Santra M, Katakowski M, et al. (2006) Protection of adult mouse progenitor cells and human glioma cells by de novo decorin expression in an oxygen- and glucose-deprived cell culture model system. J Cereb Blood Flow Metab 26:1311–1322.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt NO, Koeder D, et al. (2009) Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37.

    Article  PubMed  CAS  Google Scholar 

  • Segura T, Anderson B, et al. (2005) Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 26:359–371.

    Article  PubMed  CAS  Google Scholar 

  • Sellers DL, Maris DO, et al. (2009) Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. J Neurosci 29:6722–6733.

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Goderie SK, et al. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Wang Y, et al. (2008) Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300.

    Article  PubMed  CAS  Google Scholar 

  • Silva GA, Czeisler C, et al. (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611.

    Article  PubMed  CAS  Google Scholar 

  • Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846.

    Article  PubMed  CAS  Google Scholar 

  • Stokols S, Tuszynski MH (2006) Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443–451.

    Article  PubMed  CAS  Google Scholar 

  • Stubbs D, DeProto J, et al. (2009) Neurovascular congruence during cerebral cortical development. Cereb Cortex 19:132–141.

    Article  Google Scholar 

  • Tashiro K-I, Sephel GC, et al. (1989) A Synthetic Peptide Containing the IKVAV Sequence From the A Chain of Laminin Mediates Cell Attachment, Migration, and Neurite Outgrowth. J Biol Chem 264:16174–16182.

    PubMed  CAS  Google Scholar 

  • Tavazoie M, Van der Veken L, et al. (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288.

    Article  PubMed  CAS  Google Scholar 

  • Teng H, Zhang ZG, et al. (2008) Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab 28:764–771.

    Article  PubMed  CAS  Google Scholar 

  • Tian W, Hou S, et al. (2005) Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng 11:513–525.

    Article  PubMed  CAS  Google Scholar 

  • Tong YW, Shoichet MS (2001) Enhancing the neuronal interaction on fluoropolymer surfaces with mixed peptides or spacer group linkers. Biomaterials 22:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Tysseling-Mattiace VM, Sahni V, et al. (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823.

    Article  PubMed  CAS  Google Scholar 

  • Wan X, Riera J, et al. (2006) The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. Neuroimage 32:616–625.

    Article  PubMed  Google Scholar 

  • Wang L, Chopp M, et al. (2008) Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab 28:1361–1368.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zhang ZG, et al. (2006a) Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26:5996–6003.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Galvan V, et al. (2006b) Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Res Rev 1115:186–193.

    Article  CAS  Google Scholar 

  • Wang Y, Jin K, et al. (2007) VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res 85:740–747.

    Article  PubMed  CAS  Google Scholar 

  • Ward NL, Lamanna JC, (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res Dec; 26:870–883.

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: Opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249.

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2008) VEGF as a potential target for therapeutic intervention in depression. Curr Opin Pharmacol 8:14–19.

    Article  PubMed  CAS  Google Scholar 

  • Weber LM, Cheung CY, et al. (2008) Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels. Cell Transplant 16:1049–1057.

    Article  PubMed  Google Scholar 

  • Weidenfeller C, Svendsen CN, et al. (2007) Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem 101:555–565.

    Article  PubMed  CAS  Google Scholar 

  • Wurmser AE, Nakashima K, et al. (2004a) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430:350–356.

    Article  PubMed  CAS  Google Scholar 

  • Wurmser AE, Palmer TD, et al. (2004b). Neuroscience. Cellular interactions in the stem cell niche. Science 304:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • Yu TT, Shoichet MS (2005) Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26:1507–1514.

    Article  PubMed  CAS  Google Scholar 

  • Yu XJ, Dillon GP, et al. (1999) A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng 5:291–304.

    Article  PubMed  CAS  Google Scholar 

  • Zhang RL, Zhang ZG, et al. (2008) Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology 55:345–352.

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, et al. (2002) Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113: 683–687.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130:635–653.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contributions of the past and current members of the Madri and Lavik laboratories. This work was supported in part by USPHS grants R37-HL28373, RO1-HL51018, PO1-NS35476 and The Reed Foundation (to JAM) and through the generous support of Richard and Gail Siegal and a generous gift of Carol Sirot and the Coulter Foundation (to EL). The authors also acknowledge Ms. Cicely Williams for providing Fig. 7.2e.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Madri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lavik, E., Madri, J.A. (2010). Angiogenesis, the Neurovascular Niche and Neuronal Reintegration After Injury. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_7

Download citation

Publish with us

Policies and ethics