Skip to main content

Oxidative Stress-Mediated Development of Symbiosis in Green Paramecia

  • Chapter
  • First Online:
Symbioses and Stress

Abstract

Single cells of Paramecium bursaria (often referred to as green paramecia) harbor in its cytoplasm several hundred cells of green algae, which are morphologically and genetically almost identical to Chlorella species. P. bursaria serves as an excellent experimental model for studying the nature of endosymbiosis in which one species propagates inside the cells of other species under precise control through chemical communication between the symbiotic partners. This chapter focuses on the impact of oxidative stress due to algal photosynthesis on the behavior of hosting ciliate and the fate of symbiotic system. In fact, some of alga-derived chemicals including the members of reactive oxygen species (ROS) are apparently threatening the host cells, besides their beneficial supply with nutrients. When the ROS production by the symbiotic algae was experimentally promoted, the excretion of algae from the host cells was highly stimulated. This suggests a scenario in which the host cell bodies in P. bursaria positively eliminate the algae that are the sources of photochemical ROS production. By doing so, the host cells possibly survive by avoiding the risk of internal oxidation when the levels of oxidative stress were high enough to damage the host cells. This type of loose symbiosis between algal cells and the ciliate may support a coevolution process leading to highly tolerant host cell species that are capable of optimizing energy gain from the oxidative symbiosis. We present also a case of symbiosis distortion, which causes unregulated growth of algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aonuma, M., Kadono, T. and Kawano, T. (2007) Inhibition of anodic galvanotaxis of green paramecia by T-type calcium channel inhibitors. Z. Naturforsch. 62c: 93–102.

    Google Scholar 

  • Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639.

    Article  PubMed  CAS  Google Scholar 

  • Babbs, C.F., Pham, J.A. and Coolbaugh, R.C. (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 90: 1267–1270.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.A. and Nielsen, P.J. (1974). Transfer of photosynthetically produced carbohydrates from endosymbiotic Chlorellae to Paramecium bursaria. J. Protozool. 21: 569–570.

    PubMed  CAS  Google Scholar 

  • Collen, J., Del Rio, M.J., Garcia-Reina, G. and Pederson, M. (1995) Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta 196: 225–230.

    Article  CAS  Google Scholar 

  • De la Rosa, F.F., Montes, O. and Galvan, F. (2001) Solar energy conversion by green microalgae: a photosystem for hydrogen peroxide production. Biotechnol. Bioeng. 74: 539–543.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, S., Karaki, C. and Kawano, T. (2009) Micro-particle transporting system using galvanotactically stimulated apo-symbiotic cells of Paramecium bursaria. Z. Naturforsch. 64c: 421–423.

    Google Scholar 

  • Gerashchenko, B.I., Nishihara, N., Ohara, T., Tosuji, H., Kosaka, T. and Hosoya, H. (2000) Flow cytometry as a strategy to study the endosymbiosis of algae in Paramecium bursaria. Cytometry 41: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Görtz, H.D. (1982). Infections of Paramecium bursaria with bacteria and yeasts. J. Cell Sci. 58:445–453.

    PubMed  Google Scholar 

  • Hoshina, R., Kamako, S.I. and Imamura, N. (2004). Phylogenetic position of endosymbiotic green algae in Paramecium bursaria Ehrenberg from Japan. Plant Biol. 6: 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, H., Kimura, K., Matsuda, S., Kitamura, M., Takahashi, T. and Kosaka, T. (1995) Symbiotic algae-free strains of the green paramecium Paramecium bursaria produced by herbicide paraquat. Zool. Sci. 12: 807–810.

    Article  CAS  Google Scholar 

  • Ishikawa, T., Takeda, T., Shigeoka, S., Hirayama, O. and Mitsunaga, T. (1993) Hydrogen peroxide generation in organelles of Euglena gracilis. Phytochemistry 33: 1297–1299.

    Article  CAS  Google Scholar 

  • Iwatsuki, K. and Naitoh, Y. (1981) The role of symbiotic Chlorella in photoresponses of Paramecium bursaria. Proc. Japan Acad. 57B: 318–323.

    Google Scholar 

  • Kadono, T. and Kawano, T. (2007) Natural historical views on the controlled cell growth and oxidative stress responses in symbiotic associations between ciliated protozoa and green algae in green paramecia (Paramecium bursaria) – A mini review. ITE Lett. 8: 439–445.

    CAS  Google Scholar 

  • Kadono, T., Shiota, K., Tanaka, M., Kawano, T., Kosaka, T., and Hosoya, H. (2004a) Effect of symbiotic algae on the growth kinetics in dark-grown Paramecium bursaria. Endocytob. Cell Res. 15, 63–70.

    Google Scholar 

  • Kadono, T., Kawano, T., Hosoya, H. and Kosaka, T. (2004b) Effect of host cell growth on the cell cycle of symbiotic algae in green paramecia: flow cytometric approaches to alga-protozoa symbiosis. Protoplasma 223: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Kadono, T., Kaneko, H., Maeda, N., Kosaka, T. and Hosoya, H. (2005) Host-dependent alteration of gene expression patterns in Paramecium bursaria symbiotic algae. ITE Lett. 6: 240–243.

    CAS  Google Scholar 

  • Kadono, T., Uezu, K., Kosaka, T. and Kawano, T. (2006) Altered toxicities of fatty acid salts in green paramecia cultured in different waters. Z. Naturforsch. 61c: 541–547.

    Google Scholar 

  • Kawano, T., Kadono, T., Kosaka, T. and Hosoya, H. (2004) Green paramecia as an evolutionary winner of the oxidative symbiosis: A hypothesis and supportive data. Z. Naturforsch. 59c: 538–542.

    Google Scholar 

  • Ludloff, K. (1895) Untersuchungen über den Galvanotropismus. Arch. Gesamte Physiologie 59: 525–554.

    Article  Google Scholar 

  • Maughan, S. and Foyer, C.H. (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol. Plantar. 126: 382–397.

    Article  CAS  Google Scholar 

  • Muscatine, L., Karakashian, S.J. and Karakashian, M.W. (1967) Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant hydra. Comp. Biochem. Physiol. 20: 1–12.

    Article  CAS  Google Scholar 

  • Nakahara, M., Handa, S., Nakano, T. and Deguchi, H. (2003) Culture and pyrenoid structure of a symbiotic Chlorella species isolated from Paramecium bursaria. Symbiosis 34: 203–214.

    Google Scholar 

  • Nishihara, N., Horiike, S., Takahashi, T., Kosaka, T., Shigenaka, Y. and Hosoya, H. (1998) Cloning and characterization of endosymbiotic algae isolated from Paramecium bursaria. Protoplasma 203: 91–99.

    Article  Google Scholar 

  • Noctor, G. and Foyer, C.H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 229–279.

    Article  Google Scholar 

  • Omura, G., Ishida, M., Arikawa, M., Khan, S.M.M.K., Suemoto, Y., Kakuta, S., Yoshimura, C. and Suzaki, T. (2004) A bacteria-free monoxenic culture of Paramecium bursaria: its growth characteristics and the re-establishment of symbiosis with Chlorella in bacteria-free conditions. J. Protozool. 37: 139–150.

    Google Scholar 

  • Patterson, P.C.O. and Myers, J. (1973) Photosynthetic production of hydrogen peroxide by Anacystis nidulans. Plant Physiol. 51: 104–109.

    Article  PubMed  CAS  Google Scholar 

  • Reisser, W. (1976) Die stoffwechselphysiologischen beziehungen zwischen Paramecium bursaria Ehrbg. und Chlorella spec. in der Paramecium bursaria-Symbiose. I. Der stickstoff- und der kohlenstoff-stoffwechse. Arch. Microbiol. 107: 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Reisser, W., Becker, B. and Klein, T. (1986) Studies on ultrastructure and host range of a Chlorella attacking virus. Protoplasma 135: 162–165.

    Article  Google Scholar 

  • Riediger, S., Behrends, A., Croll, B., Vega-Naredo, I., Hänig, N., Poeggeler, B., Böker, J., Grube, S., Gipp, J., Coto-Montes, A., Haldar, C. and Hardeland, R. (2007) Toxicity of the quinalphos metabolite 2-hydroxyquinoxaline: growth inhibition, induction of oxidative stress, and genotoxicity in test organisms. Environ. Toxicol. 22: 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R.W. (1960) Hereditary endosymbiosis in Paramecium bursaria. Exp. Cell Res. 19: 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Sonneborn, T.M. (1954) The relation of autogamy to senescence and rejuvenescence in Paramecium aurelia. J. Protozool. 1: 38–53.

    Google Scholar 

  • Suntres, E.Z. (2002) Role of antioxidants in paraquat toxicity. Toxicology 180: 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, T., Ishikawa, T. and Shigeoka, S. (1997) Metabolism of hydrogen peroxide by the scavenging system in Chlamydomonas reinhardtii. Physiol. Plant 99: 49–55.

    Article  CAS  Google Scholar 

  • Tanaka, M. and Miwa, I. (1996) Significance of photosynthetic products of symbiotic Chlorella to establish the endosymbiosis and to express the mating reactivity rhythm in Paramecium bursaria. Zool. Sci. 13: 685–692.

    Article  CAS  Google Scholar 

  • Tanaka, M., Murata-Hori, M., Kadono, T., Yamada, T., Kawano, T., Kosaka, T. and Hosoya, H. (2002) Complete elimination of endosymbiotic algae from Paramecium bursaria and its confirmation by diagnostic PCR. Acta Protzool. 41: 255–261.

    CAS  Google Scholar 

  • Tausz, M., Šircelj, H. and Grill, D. (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exper. Bot. 55: 1955–1962.

    Article  CAS  Google Scholar 

  • Tonooka, Y. and Watanabe, T. (2002) A natural strain of Paramecium bursaria lacking symbiotic algae. Eur. J. Protistol. 38: 55–58.

    Article  Google Scholar 

  • Weis, D.S. (1977) Synchronous development of symbiotic Chlorellae within Paramecium bursaria. Trans. Amer. Micros. Soc. 96: 82–86.

    Article  CAS  Google Scholar 

  • Weis, D.S. (1984) The effect of accumulation time of separate cultivation on the frequency of infection of aposymbiotic ciliates by symbiotic algae in Paramecium bursaria. J. Protozool. 31: 13A–14A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kawano, T., Irie, K., Kadono, T. (2010). Oxidative Stress-Mediated Development of Symbiosis in Green Paramecia. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_9

Download citation

Publish with us

Policies and ethics