Skip to main content

Adaptation and Survival of Plants in High Stress Habitats via Fungal Endophyte Conferred Stress Tolerance

  • Chapter
  • First Online:
Symbioses and Stress

Abstract

From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, A.E. and Lutzoni, F. (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88: 541–549.

    Article  PubMed  Google Scholar 

  • Arnold, E.A., Mejia, L.C., Kyllo, D., Rojas, E., Maynard, Z., Robbins, N. and Herre, E.A. (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 100: 15649–15654.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, C.W. and Hill, N.S. (1996) Symptomless grass endophytes: products of coevolutionary ­symbioses and their role in the ecological adaptations of grasses, In: S.C. Redkin and L.M. Carris (eds.) Endophytic Fungi in Grasses and Woody Plants. APS Press, St. Paul, pp. 155–178.

    Google Scholar 

  • Bahrun, A., Jensen, C., Asch, F. and Mogensen, V. (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J. Exp. Bot. 53: 251–263.

    Article  PubMed  CAS  Google Scholar 

  • Barbour, M and DeJong, T. (1977) Response of West Coast beach taxa to salt spray, seawater inundation, and soil salinity. Bulletin of the Torrey Botanical Club 104: 29–34.

    Article  Google Scholar 

  • Bartels, D. and Sunkar, R. (2005) Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23–58.

    Article  CAS  Google Scholar 

  • Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to environmental stresses. Plant Cell. 7: 1099–1111.

    PubMed  CAS  Google Scholar 

  • Brundrett, M.C. (2006) Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi, In: B.J.E. Schulz, C.J.C. Boyle and T.N. Sieber (eds.) Microbial Root Endophytes. Springer-Verlag, Berlin, pp. 281–293.

    Chapter  Google Scholar 

  • Canfield, D.E. and Teske, A. (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382: 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, G. (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69: 2–9.

    Article  Google Scholar 

  • Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y. and Grill, E. (2006) Integration of abscisic acid signaling into plant responses. Plant Biol. 8: 314–325.

    Article  PubMed  CAS  Google Scholar 

  • Clay, K. and Holah, J. (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285: 1742–1745.

    Article  PubMed  CAS  Google Scholar 

  • Clay, K. and Schardl, C. (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160 (Suppl): S99–S127.

    Article  PubMed  Google Scholar 

  • Cleal, C.J. and Thomas, B.A. (1999) Plant Fossils: The History of Land Vegetation. The Boydell Press, Woodbridge, UK.

    Google Scholar 

  • De Bary, A. (1879) Die Erscheinung der symbiose, In: K.J. Trubner (ed.) Vortrag auf der Versammlung der Naturforscher und Aerzte zu Cassel. Strassburg. pp. 1–30.

    Google Scholar 

  • Flexas, J. and Medrano, H. (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Francis, R. and Read, D.J. (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 73: S1301–S1309.

    Article  Google Scholar 

  • Girlanda, M., Perotto, S. and Luppi, A.M. (2006) Molecular diversity and ecological roles of mycorrhiza-associated sterile fungal endophytes in Mediterranean ecosystems, In: B.J.E. Schulz, C.J.C. Boyle and T.N. Sieber (eds.) Microbial Root Endophytes. Springer-Verlag, Berlin, pp. 207–226.

    Chapter  Google Scholar 

  • Givnish, T.J. (2002) Ecological constraints on the evolution of plasticity in plants. Evol. Ecol. 16: 213–242.

    Article  Google Scholar 

  • Graham, J.H. and Eissenstat, D.M. (1998) Field evidence for the carbon cost of citrus mycorrhizas. New Phytol. 140: 103–110.

    Article  Google Scholar 

  • Graham, J.H., Drouillard, D.L. and Hodge, N.C. (1996) Carbon economy of sour orange in response to different Glomus spp. Tree Physiol. 16: 1023–1029.

    Article  PubMed  Google Scholar 

  • Iba, K. (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Ann. Rev. Plant Biol. 53: 225–245.

    Article  CAS  Google Scholar 

  • Johnson, N.C., Graham, J.H. and Smith, F.A. (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575–586.

    Article  Google Scholar 

  • Kah, L.C., Lyons, T.W. and Frank, T.D. (2004) Low marine sulphate and protracted oxygenation of the proterozoic biosphere. Nature 431: 834–838.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, T. (1904) Are plants of sea beaches and dunes true halophytes? Botanical Gazette. 37: 424–436.

    Article  Google Scholar 

  • Kim, K. and Portis, A.R.J. (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol. 46: 522–530.

    Article  PubMed  CAS  Google Scholar 

  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E. and Scharf, K.D. (2007) Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10: 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Krings, M., Taylor, T.N., Hass, H., Kerp, H., Dotzler, N. and Hermsen, E.J. (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol. 174: 648–657.

    Article  PubMed  Google Scholar 

  • Leone, A., Perrotta, C. and Maresca, B. (2003) Plant tolerance to heat stress: current strategies and new emergent insight, In: L.S. di Toppi and B. Pawlik-Skowronska (eds.) Abiotic Stresses in Plants. Kluwer, London, pp. 1–22.

    Chapter  Google Scholar 

  • Lewis, D. (1985) Symbiosis and mutualism:crisp concepts and soggy semantics. In: D.H Boucher (ed.) The Biology of Mutualism. Ecology and Evolution. Oxford University Press, New York, pp. 29–39.

    Article  Google Scholar 

  • Maggio, A., Bressan, R.A., Ruggiero, C., Xiong, L. and Grillo, S. (2003) Salt tolerance: placing advances in molecular genetics into a physiological and agronomic context, In: L.S. di Toppi and B. Pawlik-Skowronska (eds.) Abiotic Stresses in Plants. Kluwer, London, pp. 53–70.

    Chapter  Google Scholar 

  • Malinowski, D.P. and Belesky, D.P. (2000) Adaptations of endophtye-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40: 923–940.

    Article  CAS  Google Scholar 

  • Márquez, L.M., Redman, R.S., Rodriguez, R.J. and Roossinck, M.J. (2007) A virus in a fungus in a plant – three way symbiosis required for thermal tolerance. Science 315: 513–515.

    Article  PubMed  Google Scholar 

  • Neill, S., Desikan, R. and Hancock, J. (2002) Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5: 388–395.

    Article  PubMed  CAS  Google Scholar 

  • Niu, X., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiol. 109: 735–742.

    PubMed  CAS  Google Scholar 

  • Pan, X.Y., Geng, Y.P., Zhang, W.J., Li, B. and Chen, J.K. (2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecol. Int. J. Ecol. 30: 333–341.

    Article  Google Scholar 

  • Perelman, S.B., Chaneton, E.J., Batista, W.B., Burkart, S.E. and Leon, R.J.C. (2007) Habitat stress, species pool size and biotic resistance influence exotic plant richness in the Flooding Pampa grasslands. J. Ecol. 95: 662–673.

    Article  Google Scholar 

  • Petrini, O. (1996) Ecological and physiological aspects of host-specificity in endophytic fungi, In: S.C. Redlin and L.M. Carris (eds.) Endophytic Fungi in Grasses and Woody Plants. APS Press, St. Paul, pp. 87–100.

    Google Scholar 

  • Pianka, E.R. (1966) Latitudinal gradients in species diversity – a review of concepts. Am. Nat. 100: 33–46.

    Article  Google Scholar 

  • Redman, R.S., Dunigan, D.D. and Rodriguez, R.J. (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol. 151: 705–716.

    Article  Google Scholar 

  • Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. and Henson, J.M. (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298: 1581.

    Article  PubMed  CAS  Google Scholar 

  • Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S. and Blumwald, E. (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 104: 19631–19366.

    Article  PubMed  CAS  Google Scholar 

  • Robe, W.E. and Griffiths, H. (2000) Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environ. 23: 1041–1054.

    Article  Google Scholar 

  • Rodriguez, R.J., Redman, R.S. and Henson, J.M. (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strat. Global Change 9: 261–272.

    Article  Google Scholar 

  • Rodriguez, R.J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. and Redman, R.S. (2008) Stress tolerance in plants via habitat-adapted symbiosis. Int. Soc. Microb. Ecol. 2: 404–416.

    Google Scholar 

  • Sahay, N.S. and Varma, A. (1999) Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol. Lett. 181: 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Salah, H. and Tardieu, F. (1997) Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand (a superposition of hydraulic and chemical messages?). Plant Physiol. 114: 893–900.

    PubMed  CAS  Google Scholar 

  • Salvucci, M.E. and Crafts-Brandner, S.J. (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol. 134: 1460–1470.

    Article  PubMed  CAS  Google Scholar 

  • Schardl, C. and Leuchtmann, A. (2005) The Epichloe endophytes of grasses and the symbiotic continuum, In: J. Dighton, J.F. White and P. Oudemans (eds.) The Fungal Community: Its organization and Role in the Ecosystem. Taylor & Francis, Boca Raton, FL, pp. 475–503.

    Google Scholar 

  • Schopf, J.W. (1993) Microfossils of the early archean apex chert – new evidence of the antiquity of life. Science 260: 640–646.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, B.J.E. (2006) Mutualistic interactions with fungal root endophytes, In: B.J.E. Schulz, C.J.C. Boyle and T.N. Sieber (eds.) Microb. Root Endophytes. Springer-Verlag, Berlin, pp. 261–280.

    Chapter  Google Scholar 

  • Schulz, B. and Boyle, C. (2005) The endophytic continuum. Mycol. Res. 109: 661–686.

    Article  PubMed  Google Scholar 

  • Schurr, U., Walter, A. and Rascher, U. (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ. 29: 340–352.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, G.C. (1989) The latitudinal gradient in geographical range – how so many species coexist in the tropics. Am. Nat. 133: 240–256.

    Article  Google Scholar 

  • Stout, R.G. and Al-Niemi, T.S. (2002) Heat-tolerance flowering plants of active geothermal areas in Yellowstone National Park. Ann. Bot. 90: 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z. and Lu, C. (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143: 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa, R., Grillo, S. and Ellis, R.P. (2003) Unravelling the genetic basis of drought tolerance in crops, In: L.S. di Toppi and B. Pawlik-Skowronska (eds.) Abiotic Stresses in Plants. Kluwer, London, pp. 71–122.

    Chapter  Google Scholar 

  • Van Bael, S.A., Maynard, Z., Rojas, E., Mejia, L.C., Kyllo, D.A., Herre E.A, Robbins, N., Bischoff, J.F. and Arnold, A.E. (2005). Emerging perspectives on the ecological roles of endophytic fungi in ­tropical plants, In: J. Dighton, J.F. White and P. Oudemans (eds.) The Fungal Community: Its Organization and Role in the Ecosystem. Taylor & Francis, Boca Raton, FL, pp. 505–518.

    Google Scholar 

  • Vani, B., Saradhi, P.P. and Mohanty, P. (2001) Characterization of high temperature induced stress impairments in thylakoids of rice seedlings. Ind. J. Biochem. Biophys. 38: 220–229.

    CAS  Google Scholar 

  • Vaughn, K.C. and Duke, S.O. (1983) In situ localization of the sites of paraquat action. Plant Cell Environ. 6: 13–20.

    CAS  Google Scholar 

  • Waditee, R., Bhuiyan, M.N., Rai, V., Aoki, K., Tanaka, Y., Hibino T., Suzuki, S., Takano, J., Jagendorf, A.T., Takabe, T. and Takabe, T. (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc. Natl. Acad. Sci. USA 102: 1318–1323.

    Article  PubMed  CAS  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., von Wettstein, D., Franken, P. and Kogel, K.H. (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 102: 13386–13391.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y.W., Lai, K.N., Tai, P.Y. and Li, W.H. (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J. Mol. Evol. 48: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095–10102.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J. and Kleinhofs, A. (1996) Molecular evolution of nitrate reductase genes. J. Mol. Evol. 42: 432–442.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Geological Survey, and support funding from NSF (0414463) and US/IS BARD (3260-01C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rusty J. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rodriguez, R.J., Woodward, C., Redman, R.S. (2010). Adaptation and Survival of Plants in High Stress Habitats via Fungal Endophyte Conferred Stress Tolerance. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_23

Download citation

Publish with us

Policies and ethics