Skip to main content

Chapter 11 Transport Processes: Connecting the Reactions of C4 Photosynthesis

  • Chapter
  • First Online:
C4 Photosynthesis and Related CO2 Concentrating Mechanisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 32))

Summary

The C4 cycle requires immense metabolite fluxes. The spatial separation of initial carbon fixation by phosphoenolpyruvate carboxylase and entry in the photosynthetic carbon reduction cycle through Rubisco requires metabolites to shuttle not only between cells but also across intracellular membranes. C4 photosynthesis is a highly compartmentalized process. Atmospheric CO2 is fixed into C4 acids (photosynthetic carbon assimilation, PCA) in one tissue and C4 acids donate CO2 to Rubisco in another (photosynthetic carbon reduction, PCR). PCA occurs in chloroplasts and cytosol; PCR occurs in ­chloroplasts, and depending on the subtype of C4 photosynthesis may involve the mitochondria and cytosol. Intercellular transport likely occurs symplastically but the intracellular transport processes across the organellar membranes are at least in part mediated by specific transport proteins. These transport processes are of particular interest because metabolites have to be transported at the rate of carbon assimilation; each carbon which is shuttled as a C4 acid necessitates distinct transport processes as does the C3 acid which returns to recycle the initial carbon acceptor. Currently, it is not fully understood how the organellar membranes accommodate the high volume and velocity of the necessary flux. This chapter will review the different types of C4 cycle reactions and the transport processes required for each sub-type based on the localization of the enzymes involved in the C4 cycle. For each transport process the current knowledge about the transport proteins involved is stated in detail, including discussion of candidate transport proteins characterized in C3 systems. Finally, novel strategies for identifying and characterizing molecular candidates for transport proteins and their importance for engineering a C4 cycle in C3 crop plants are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-OG:

2-Oxoglutarate

3-PGA:

3-­Phosphoglycerate

AAC:

ATP ADP carrier

DHAP:

Dihydroxyacetone phosphate

DIC:

Dicarboxylate carrier

DiT:

Dicarboxylate translocator

DTC:

Di- and tricarboxylate carrier

MCF:

Mitochondrial carrier family

MDH:

Malate dehydrogenase

NAD-ME:

NAD-malic enzyme

NADP-ME:

NADP-malic enzyme

OAA:

Oxaloacetate

PCA:

Photosynthetic carbon assimilation

PCR:

Photosynthetic carbon reduction

PEP:

Phosphoenolpyruvate

PEPC:

Phosphoenolpyruvate carboxylase

PPT:

Phosphoenolpyruvate phosphate translocator

PPDK:

PEP phosphate dikinase

PEP-CK:

PEP carboxykinase

Rubisco:

Ribulosebisphosphate carboxylase oxygenase

TPT:

Triose-phosphate phosphate translocator

References

  • Anderson JW and House CM (1979) Polarographic study of oxaloacetate reduction by isolated pea-chloroplasts. Plant Physiol 64: 1058–1063

    PubMed  CAS  Google Scholar 

  • Andre C and Benning C (2007) Arabidopsis seedlings deficient in a plastidic pyruvate kinase are unable to utilize seed storage compounds for germination and establishment. Plant Physiol 145: 1670–1680

    PubMed  CAS  Google Scholar 

  • Andre C, Froehlich JE, Moll MR and Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19: 2006–2022

    PubMed  CAS  Google Scholar 

  • Aoki N, Ohnishi J and Kanai R (1992) 2 Different mechanisms for transport of pyruvate into mesophyll chloroplasts of C4 plants-A comparative-study. Plant Cell Physiol 33: 805–809

    CAS  Google Scholar 

  • Bakker EP and Vandam K (1974) Movement of monocarboxylic acids across phospholipid membranes – evidence for an exchange diffusion between pyruvate and other monocarboxylate ions. Biochim Biophys Acta 339: 285–289

    CAS  Google Scholar 

  • Benning C (1986) Evidence supporting a model of voltage-dependent uptake of auxin into cucurbita vesicles. Planta 169: 228–237

    CAS  Google Scholar 

  • Benz R (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes – review on mitochondrial porins. Biochim Biophys Acta 197: 167–196

    Google Scholar 

  • Boag S and Jenkins CLD (1985) CO2 assimilation and malate decarboxylation by isolated bundle sheath chloroplasts from Zea mays. Plant Physiol 79: 165–170

    PubMed  CAS  Google Scholar 

  • Boag S and Jenkins CLD (1986) The involvement of aspartate and glutamate in the decarboxylation of malate by isolated bundle sheath chloroplasts from Zea mays. Plant Physiol 81: 115–119

    PubMed  CAS  Google Scholar 

  • Bolter B, Soll J, Hill K, Hemmler R and Wagner R (1999) A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea. EMBO J 18: 5505–5516

    PubMed  CAS  Google Scholar 

  • Bräutigam A, Hoffmann-Benning S and Weber APM (2008a) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol 148: 568–579

    PubMed  Google Scholar 

  • Bräutigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE and Weber APM (2008b) Comparison of the use of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. J ­Biotechnol 136: 44–53

    PubMed  Google Scholar 

  • Brown NJ, Parsley K and Hibberd JM (2005) The future of C4 research – maize, flaveria or cleome? Trends Plant Sci 10: 215–221

    PubMed  CAS  Google Scholar 

  • Burnell JN and Hatch MD (1985) Light dark modulation of leaf pyruvate, Pi dikinase. Trends Biochem Sci 10: 288–291

    CAS  Google Scholar 

  • Burnell JN and Hatch MD (1988a) Photosynthesis in phosphoenolpyruvate carboxykinase-type-C4 plants – pathways of C4 acid decarboxylation in bundle sheath-cells of urochloa panicoides. Arch Biochem Biophys 260: 187–199

    PubMed  CAS  Google Scholar 

  • Burnell JN and Hatch MD (1988b) Photosynthesis in phosphoenolpyruvate carboxykinase-type-C4 plants – photosynthetic activities of isolated bundle sheath-cells from urochloa panicoides. Arch Biochem Biophys 260: 177–186

    PubMed  CAS  Google Scholar 

  • Craig S and Goodchild DJ (1977) Leaf ultrastructure of triodia irritans – C4 grass possessing an unusual arrangement of photosynthetic tissues. Aust J Bot 25: 277–290

    CAS  Google Scholar 

  • Day DA and Hatch MD (1981) Transport of ­3-phosphoglyceric acid, phosphoenolpyruvate, and inorganic-phosphate in maize mesophyll chloroplasts, and the effect of 3-phosphoglyceric acid on malate and phosphoenolpyruvate production. Arch Biochem Biophys 211: 743–749

    PubMed  CAS  Google Scholar 

  • Desantis A, Arrigoni O and Palmieri F (1976) Carrier-­mediated transport of metabolites in purified bean mitochondria. Plant Cell Physiol 17: 1221–1233

    CAS  Google Scholar 

  • Ding B, Turgeon R and Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169: 28–41

    Google Scholar 

  • Edwards GE, Franceschi VR, Ku MSB, Voznesenskaya EV, Pyankov VI and Andreo CS (2001a) Compartmentation of photosynthesis in cells and tissues of C4 plants. J Exp Bot 52: 577–590

    PubMed  CAS  Google Scholar 

  • Edwards GE, Furbank RT, Hatch MD and Osmond CB (2001b) What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiol 125: 46–49

    PubMed  CAS  Google Scholar 

  • Emmermann M, Braun HP and Schmitz UK (1991) The ADP ATP translocator from potato has a long amino-­terminal extension. Curr Genet 20: 405–410

    PubMed  CAS  Google Scholar 

  • Erwee MG and Goodwin PB (1985) Symplast domains in extrastellar tissues of egeria densa planch. Planta 163: 9–19

    CAS  Google Scholar 

  • Evert RF, Eschrich W and Heyser W (1977) Distribution and structure of plasmodesmata in mesophyll and bundle-sheath cells of zea mays L. Planta 136: 77–89

    Google Scholar 

  • Fischer K, Arbinger B, Kammerer B, Busch C, Brink S, Wallmeier H, Sauer N, Eckerskorn C and Flügge UI (1994) Cloning and in-vivo expression of functional triose phosphate/phosphate translocators from C3-plants and C4-plants – evidence for the putative participation of specific amino-acid-residues in the recognition of phosphoenolpyruvate. Plant J 5: 215–226

    PubMed  CAS  Google Scholar 

  • Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Häusler RE and Flügge UI (1997) A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9: 453–462

    PubMed  CAS  Google Scholar 

  • Flügge UI and Heldt HW (1984) The phosphate-triose phosphate-phosphoglycerate translocator of the chloroplast. Trends Biochem Sci 9: 530–533

    Google Scholar 

  • Flügge UI and Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Google Scholar 

  • Flügge UI, Stitt M and Heldt HW (1985) Light-Driven uptake of pyruvate into mesophyll chloroplasts from maize. FEBS Lett 183: 335–339

    Google Scholar 

  • Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee BH, Hirose S, Toki S, Ku MSB, Makino A, Matsuoka M and Miyao M (2001) Significant accumulation of C4-specific pyruvate,orthophosphate dikinase in a C3 plant, rice. Plant Physiol 127: 1136–1146

    PubMed  CAS  Google Scholar 

  • Furbank RT and Hatch MD (1987) Mechanism Of C4 Photosynthesis – the size and composition of the inorganic carbon pool in bundle sheath-cells. Plant Physiol 85: 958–964

    PubMed  CAS  Google Scholar 

  • Goetze TA, Philippar K, Ilkavets I, Soll J and Wagner R (2006) OEP37 is a new member of the chloroplast outer membrane ion channels. J Biol Chem 281: 17989–17998

    PubMed  CAS  Google Scholar 

  • Halling PJ, Brand MD and Chappell JB (1973) Permeability of mitochondria to neutral amino-acids. FEBS Lett 34: 169–171

    PubMed  CAS  Google Scholar 

  • Hanning I, Baumgarten K, Schott K and Heldt HW (1999) Oxaloacetate transport into plant mitochondria. Plant Physiol 119: 1025–1031

    PubMed  CAS  Google Scholar 

  • Hatch M (2002) C4 photosynthesis: discovery and resolution. Photosynth Res 73: 251–256

    PubMed  CAS  Google Scholar 

  • Hatch M, Droscher L, Flügge UI and Heldt HW (1984a) A specific translocator for oxaloacetate transport in chloroplasts. FEBS Lett 178: 15–19

    CAS  Google Scholar 

  • Hatch MD (1987) C4 Photosynthesis – a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895: 81–106

    CAS  Google Scholar 

  • Hatch MD, Agostino A and Burnell JN (1988) Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants – activity and role of mitochondria in bundle sheath-cells. Arch Biochem Biophys 261: 357–367

    PubMed  CAS  Google Scholar 

  • Hattersley PW and Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. 1. in parenchymatous bundle sheaths and PCR (Kranz) sheaths. Protoplasma 109: 371–401

    Google Scholar 

  • Häusler RE, Schlieben NH and Flügge UI (2000) Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator. Planta 210: 383–390

    PubMed  Google Scholar 

  • Heber U (1974) Metabolite exchange between chloroplasts and cytoplasm. Annu Rev Plant Physiol Plant Mol Biol 25: 393–421

    CAS  Google Scholar 

  • Henderson SA, von Caemmerer S and Farquhar GD (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol 19: 263–285

    CAS  Google Scholar 

  • Howitz KT and McCarty RE (1986) D-Glycerate transport by the pea chloroplast glycolate carrier – studies on [1-C-14] D-glycerate uptake and D-glycerate dependent O2 evolution. Plant Physiol 80: 390–395

    PubMed  CAS  Google Scholar 

  • Howitz KT and McCarty RE (1991) Solubilization, partial-purification, and reconstitution of the glycolate glycerate transporter from chloroplast inner envelope membranes. Plant Physiol 96: 1060–1069

    PubMed  CAS  Google Scholar 

  • Huber SC and Edwards GE (1977a) Transport in C4 mesophyll chloroplasts – characterization of pyruvate carrier. Biochim Biophys Acta 462: 583–602

    PubMed  CAS  Google Scholar 

  • Huber SC and Edwards GE (1977b) Transport in C4 mesophyll chloroplasts – evidence for an exchange of inorganic-phosphate and phosphoenolpyruvate. Biochim Biophys Acta 462: 603–612

    PubMed  CAS  Google Scholar 

  • Kagawa T and Hatch MD (1975) Mitochondria as a site of C4 acid eecarboxylation in C4-pathway photosynthesis. Arch Biochem Biophys 167: 687–696

    PubMed  CAS  Google Scholar 

  • Knappe S, Lottgert T, Schneider A, Voll L, Flügge UI and Fischer K (2003) Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis-AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J 36: 411–420

    PubMed  CAS  Google Scholar 

  • Kubasek J, Setlik J, Dwyer S and Santrucek J (2007) Light and growth temperature alter carbon isotope discrimination and estimated bundle sheath leakiness in C4 grasses and dicots. Photosynth Res 91: 47–58

    PubMed  CAS  Google Scholar 

  • Kunze R, Frommer WB and Flügge UI (2002) Metabolic engineering of plants: The role of membrane transport. Metab Eng 4: 57–66

    PubMed  CAS  Google Scholar 

  • Laisk A and Edwards GE (2000) A mathematical model of C4 photosynthesis: The mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66: 199–224

    PubMed  CAS  Google Scholar 

  • Laloi M (1999) Plant mitochondrial carriers: an overview. Cell Mol Life Sci 56: 918–944

    PubMed  CAS  Google Scholar 

  • Leegood RC (1985) The intercellular compartmentation of metabolites in leaves of Zea mays-L. Planta 164: 163–171

    CAS  Google Scholar 

  • Leegood RC, Crowther D, Walker DA and Hind G (1983) Energetics of photosynthesis in zea mays. 1. Studies of the flash-induced electrochromic shift and fluorescence induction in bundle sheath-cells. Biochim Biophys Acta 722: 116–126

    CAS  Google Scholar 

  • Leegood RC and Edwards GE (1996) Photosynthesis and the environment. Kluwer: Dordrecht, The Netherlands

    Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB and Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115: 1681–1689

    PubMed  CAS  Google Scholar 

  • Majeran W, Cai Y, Sun Q and van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17: 3111–3140

    PubMed  CAS  Google Scholar 

  • Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q and van Wijk KJ (2008) Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 7: 1609–1638

    PubMed  CAS  Google Scholar 

  • Matsuoka M, Furbank RT, H. F, M. M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52: 297–314

    PubMed  CAS  Google Scholar 

  • McIntosh CA and Oliver DJ (1994) The phosphate transporter from pea mitochondria – isolation and characterization in proteolipid vesicles. Plant Physiol 105: 47–52

    PubMed  CAS  Google Scholar 

  • Meierhoff K and Westhoff P (1993) Differential biogenesis of photosystem-Ii in mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type C4 plants – the nonstoichiometric abundance of the subunits of photosystem-II in the bundle-sheath chloroplasts and the translational activity of the plastome-encoded genes. Planta 191: 23–33

    CAS  Google Scholar 

  • Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54: 179–189

    PubMed  CAS  Google Scholar 

  • Muhaidat R, Sage RF and Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94: 362–381

    PubMed  CAS  Google Scholar 

  • Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgartner M, Philippar K, Carrie C, Mokranjac D, Soll J and Whelan J (2007) Characterization of the preprotein and amino acid transporter gene family in arabidopsis. Plant Physiol 143: 199–212

    PubMed  CAS  Google Scholar 

  • Neuhaus HE, Thom E, Mohlmann T, Steup M and Kampfenkel K (1997) Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J 11: 73–82

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Flügge UI, Heldt HW and Kanai R (1990) Involvement of Na+ in active uptake of pyruvate in mesophyll chloroplasts of some C4 plants – Na+/pyruvate cotransport. Plant Physiol 94: 950–959

    PubMed  CAS  Google Scholar 

  • Ohnishi JI and Kanai R (1987a) Na+-Induced uptake of pyruvate into mesophyll chloroplasts of a C4 plant, Panicum miliaceum. FEBS Lett 219: 347–350

    CAS  Google Scholar 

  • Ohnishi JI and Kanai R (1987b) Pyruvate uptake by mesophyll and bundle sheath chloroplasts of a C4 plant, Panicum miliaceum L. Plant Cell Physiol 28: 1–10

    CAS  Google Scholar 

  • Overall RL, Wolfe J and Gunning BES (1982) Inter-cellular communication in azolla roots. 1. Ultrastructure of plasmodesmata. Protoplasma 111: 134–150

    Google Scholar 

  • Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F and Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410: 621–629

    PubMed  CAS  Google Scholar 

  • Picault N, Hodges M, Paimieri L and Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9: 138–146

    PubMed  CAS  Google Scholar 

  • Picault N, Palmieri L, Pisano I, Hodges M and Palmieri F (2002) Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria - Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 277: 24204–24211

    PubMed  CAS  Google Scholar 

  • Pohlmeyer K, Soll J, Grimm R, Hill K and Wagner R (1998) A high-conductance solute channel in the chloroplastic outer envelope from pea. Plant Cell 10: 1207–1216

    PubMed  CAS  Google Scholar 

  • Pohlmeyer K, Soll J, Steinkamp T, Hinnah S and Wagner R (1997) Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc Natl Acad Sci USA 94: 9504–9509

    PubMed  CAS  Google Scholar 

  • Prasad GVR, Coury LA, Finn F and Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273: 33123–33126

    PubMed  CAS  Google Scholar 

  • Proudlove MO and Moore AL (1982) Movement of amino-acids into isolated plant-mitochondria. FEBS Lett 147: 26–30

    CAS  Google Scholar 

  • Proudlove MO and Thurman DA (1981) The uptake of 2-oxoglutarate and pyruvate by isolated pea-chloroplasts. New Phytol 88: 255–264

    CAS  Google Scholar 

  • Renne P, Dressen U, Hebbeker U, Hille D, Flügge UI, Westhoff P and Weber APM (2003) The arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 35: 316–331

    PubMed  CAS  Google Scholar 

  • Roberts AG and Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26: 103–124

    Google Scholar 

  • Rumpho ME and Edwards GE (1984) Inhibition of ­3-phosphoglycerate-dependent O2 evolution by phosphoenolpyruvate In C4 mesophyll chloroplasts of digitaria sanguinalis (L) scop. Plant Physiol 76: 711–718

    PubMed  CAS  Google Scholar 

  • Rumpho ME and Edwards GE (1985) Characterization of 4,4’-diisothiocyano-2,2’-disulfonic acid stilbene inhibition of 3-phosphoglycerate-dependent O2 evolution in isolated-chloroplasts – evidence for a common binding-site on the C4 phosphate translocator for 3-phosphoglycerate, phosphoenolpyruvate, and inorganic-phosphate. Plant Physiol 78: 537–544

    PubMed  CAS  Google Scholar 

  • Rumpho ME, Wessinger ME and Edwards GE (1987) Influence of organic-phosphates on 3-phosphoglycerate dependent O2 evolution in C3 and C4 mesophyll chloroplasts. Plant Cell Physiol 28: 805–813

    CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161: 341–370

    CAS  Google Scholar 

  • Sawers RJH, Liu P, Anufrikova K, Hwang JTG and Brutnell TP (2007) A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics 8:12

    PubMed  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120: 21–26

    PubMed  CAS  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V and Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56: 1481–1489

    PubMed  CAS  Google Scholar 

  • Schneider A, Häusler RE, Kolukisaoglu U, Kunze R, van der Graaff E, Schwacke R, Catoni E, Desimone M and Flügge UI (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis: but not starch mobilisation is abolished. Plant J 32: 685–699

    PubMed  CAS  Google Scholar 

  • Schneidereit J, Häusler RE, Fiene G, Kaiser WM and Weber APM (2006) Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. Plant J 45: 206–224

    PubMed  CAS  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK and Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316: 73–80.

    PubMed  CAS  Google Scholar 

  • Singh BK and Shaner DL (1995) Biosynthesis of branched-chain amino-acids – from test-tube to field. Plant Cell 7: 935–944

    PubMed  CAS  Google Scholar 

  • Somerville SC and Ogren WL (1983) An arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc Natl Acad Sci USA 80: 1290–1294

    PubMed  CAS  Google Scholar 

  • Sowinski P, Szczepanik J and Minchin PEH (2008) On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses. J Exp Bot 59: 1137–1147

    PubMed  CAS  Google Scholar 

  • Stitt M and Heldt HW (1985) Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves. Biochim Biophys Acta 808: 400–414

    CAS  Google Scholar 

  • Streatfield SJ, Weber A, Kinsman EA, Häusler RE, Li JM, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flügge UI and Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11: 1609–1621

    PubMed  CAS  Google Scholar 

  • Taniguchi M and Sugiyama T (1996) Isolation, characterization and expression of cDNA clones encoding a mitochondrial malate translocator from Panicum miliaceum L. Plant Mol Biol 30: 51–64

    PubMed  CAS  Google Scholar 

  • Taniguchi M and Sugiyama T (1997) The expression of 2-oxoglutarate/malate translocator in the bundle-sheath Mitochondria of Panicum miliaceum, a NAD-malic enzyme-type C4 plant, is regulated by light and development. Plant Physiol 114: 285–293

    PubMed  CAS  Google Scholar 

  • Taniguchi M, Taniguchi Y, Kawasaki M, Takeda S, Kato T, Sato S, Tahata S, Miyake H and Sugiyama T (2002) Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana. Plant Cell Physiol 43: 706–717

    PubMed  CAS  Google Scholar 

  • Taniguchi Y, Nagasaki J, Kawasaki M, Miyake H, Sugiyama T and Taniguchi M (2004) Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize. Plant Cell Physiol 45: 187–200

    PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F and Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425: 734–737

    PubMed  CAS  Google Scholar 

  • Usuda H and Edwards GE (1980a) Localization of glycerate kinase and some enzymes for sucrose synthesis in C3 and C4 plants. Plant Physiol 65: 1017–1022

    PubMed  CAS  Google Scholar 

  • Usuda H and Edwards GE (1980b) Photosynthetic formation of glycerate in isolated bundle sheath-cells and its metabolism in mesophyll-cells of the C4 plant panicum capillare L. Aust J Plant Physiol 7: 655–662

    CAS  Google Scholar 

  • Voll LM, Häusler RE, Hecker R, Weber APM, Weissenböck G, Fiene G, Waffenschmidt S and Flügge UI (2003) The phenotype of the arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway. Plant J 36: 301

    Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H and Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31: 649–662

    PubMed  CAS  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H and Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414: 543–546

    PubMed  CAS  Google Scholar 

  • Walker DA and Edwards GE (1983) ‘C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell Scientific Publications: Oxford

    Google Scholar 

  • Weber A, Menzlaff E, Arbinger B, Gutensohn M, Eckerskorn C and Flügge UI (1995) The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34: 2621–7

    PubMed  CAS  Google Scholar 

  • Weber APM (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7: 247–253

    PubMed  CAS  Google Scholar 

  • Weber APM and Fischer K (2007) Making the connections – the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 581: 2215–2222

    PubMed  CAS  Google Scholar 

  • Weber APM and Flügge UI (2002) Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot 53: 865–874

    PubMed  CAS  Google Scholar 

  • Weber APM, Linka M and Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5: 609–612

    PubMed  CAS  Google Scholar 

  • Weber APM, Schwacke R and Flügge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56: 133–164

    PubMed  Google Scholar 

  • Weber APM, Weber KL, Carr K, Wilkerson C and Ohlrogge JB (2007) Sampling the arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144: 32–42

    PubMed  CAS  Google Scholar 

  • Winning BM, Day CD, Sarah CJ and Leaver CJ (1991) Nucleotide-sequence of 2 cDNAs encoding the adenine-nucleotide translocator from zea mays L. Plant Mol Biol 17: 305–307

    PubMed  CAS  Google Scholar 

  • Wiskich JT (1977) Mitochondrial metabolite transport. Annu Rev Plant Physiol Plant Mol Biol 28: 45–69

    CAS  Google Scholar 

  • Woo KC, Flügge UI and Heldt HW (1987) A 2-Translocator model for the transport of 2-oxoglutarate and glutamate in chloroplasts during ammonia assimilation in the light. Plant Physiol 84: 624–632

    PubMed  CAS  Google Scholar 

  • Young XK and McCarty RE (1993) Assay of proton-coupled glycolate and d-glycerate transport into chloroplast inner envelope membrane-vesicles by stopped-flow fluorescence. Plant Physiol 101: 793–799

    PubMed  CAS  Google Scholar 

  • Yu C, Claybrook DL and Huang AHC (1983) Transport of glycine, serine, and proline into spinach leaf mitochondria. Arch Biochem Biophys 227: 180–187

    PubMed  CAS  Google Scholar 

  • Zhang L, Häusler RE, Greiten C, Hajirezaei M, ­Haferkamp I, Neuhaus HE, Flügge U-I and Ludewig F (2008) Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol J; 6: 453–464

    PubMed  CAS  Google Scholar 

  • Zoglowek C, Kromer S and Heldt HW (1988) Oxaloacetate and malate transport by plant-mitochondria. Plant Physiol 87: 109–115

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ lab is supported by grants of the National Science Foundation (USA) and the German Research Foundation (DFG, Germany). AB is grateful to the Barnett-Rosenberg Foundation and the Deutsche Studienstiftung for financial support. The authors wish to thank Dr. R. Sage and two anonymous reviewers for helpful comments on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas P. M. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Bräutigam, A., Weber, A.P.M. (2010). Chapter 11 Transport Processes: Connecting the Reactions of C4 Photosynthesis. In: Raghavendra, A., Sage, R. (eds) C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9407-0_11

Download citation

Publish with us

Policies and ethics