Skip to main content

Glutathione and Herbicide Resistance in Plants

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

Pesticide use is inseparable part of food production. The efficacy of modern agriculture is quite dependent on the chemicals used to fight with pests, including weeds, fungi and insects. Herbicides are chemicals which destroy weeds. According to their mode of action herbicides are divided on 24 groups (Herbicide Resistance Action Committee). The balance between toxicity on weeds and resistance of crops defines herbicide selectivity. Herbicide tolerance depends on the plants variety, development phase, climate, mode of action, dose and the way plants were treated with herbicides. Glutathione is one of the major defense substances of plants. It takes part in many detoxifying mechanisms, like active oxygen species reducing, and also regulates cell defense systems. Glutathione has key role in detoxifying of toxic xenobiotics, including herbicides. In some crops the resistance against herbicides is due to its direct detoxification by forming conjugates with glutathione. The process can be catalyzed by the enzyme glutathione S-transferase. After their forming, conjugates can be metabolized and excreted or can be stored in vacuoles and dead tissues. Many herbicides, such as atrazine, paraquat, etc., induce oxidative events in plant cell. Glutathione takes part in detoxifying active oxygen species and this is a way for indirect enhancement of plant resistance against herbicides. In the current review the mode of action of herbicides inducing oxidative stress will be discussed. Examples of plant antioxidant system response against herbicide action will be presented. The role of glutathione in direct and indirect detoxification of herbicides and increase of plants sustainability will be deeply reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotech Adv 27:474–488

    Article  PubMed  CAS  Google Scholar 

  • Ananieva e, Christov K, Popova L (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J Plant Physiol 161:319–328

    Article  PubMed  CAS  Google Scholar 

  • Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 120:421–433

    Article  PubMed  CAS  Google Scholar 

  • Anderson MP, Gronwald JW (1991) Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione S-transferase activity. Plant Physiol 96:104–109

    Article  PubMed  CAS  Google Scholar 

  • Andrews CJ, Cummins I, Skipsey M, Grundy NM, Jepson I, Townson J, Edward R (2005) Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pest Biochem Physiol 82:205–219

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxigen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–99

    Article  PubMed  CAS  Google Scholar 

  • Barron E (1951) Thiol groups of biological importance. Adv Enzymol 11:201–266

    Google Scholar 

  • Beck A, Lendzian K, Oven M, Christmann A, Grill E (2003) Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry 62:423–431

    Article  PubMed  CAS  Google Scholar 

  • Brazier-Hicks M, Evans KM, Cunningham OD, Hodgson DRW, Steel PG, Edwards R (2008) Catabolism of Glutathione Conjugates in Arabidopsis thaliana: role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem 283:21102–21112

    Article  PubMed  CAS  Google Scholar 

  • Cherifi M, Raveton M, Picciocchi A, Ravanel P, Tissut M (2001) Atrazine metabolism in corn seedlings. Plant Physiol Biochem 39:665–672

    Article  CAS  Google Scholar 

  • Cho HY, Kong KH (2005) Molecular cloning, expression, and characterization of a phi-type glutathione S-transferase from Oryza sativa. Pest Biochem Physiol 83:29–36

    Article  CAS  Google Scholar 

  • Cocker KM, Northcroft DS, Coleman JOD, Moss SR (2001) Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest Manag Sci 57:587–597

    Article  PubMed  CAS  Google Scholar 

  • Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modulation and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Crawford N, Kahn M, Leustek T, Long S (2000) Chapter 16 Nitrogen and sulfur. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 824–844

    Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1997a) Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole-ethyl. Pest Biochem Physiol 59:35–49

    Article  CAS  Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292

    Article  PubMed  CAS  Google Scholar 

  • Cummins I, Moss S, Cole DJ, Edwards R (1997b) Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pest Sci 51:244–250

    Article  CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • De Ridder BP, Goldsbrough PB (2006) Organ-specific expression of glutathione S-transferases and the efficacy of herbicide safeners in Arabidopsis. Plant Physiol 140:167–175

    Article  Google Scholar 

  • Del Buono D, Scarponi L, Espen L (2007) Glutathione S-transferases in Festuca arundinacea: Identification, characterization and inducibility by safener benoxacor. Phytochemistry 68:2614–2624

    Article  PubMed  Google Scholar 

  • Dixon D, Cole DJ, Edwards R (1997) Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (Zea mays). Pest Sci 50:72–82

    Article  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:30004.1–30004.10

    Article  Google Scholar 

  • Doran PM (2005) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  Google Scholar 

  • Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304

    Article  PubMed  CAS  Google Scholar 

  • Foyer C, Noctor G (2001) The molecular biology and metabolism of glutathione. In: Grill D, Tausz M, De Кок L (eds) Significance of glutathione in plant adaptation to the environment, vol 2, Handbook series of plant ecophysiology. Kluwer, Dordrecht, The Netherlands, pp. 27–56

    Chapter  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic link between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–492

    Article  PubMed  CAS  Google Scholar 

  • GrabiÅ„ska-Sota E, WiÅ›niowska E, Kalka J (2003) Toxicity of selected synthetic auxines – 2, 4-D and MCPA derivatives to broad-leaved and cereal plants. Crop Prot 22:55–360

    Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gammaglutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  PubMed  CAS  Google Scholar 

  • Hall LM, Moss SR, Powles SB (1997) Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass): herbicide metabolism as a cross-resistance mechanism. Pest Biochem Physiol 57:87–98

    Article  CAS  Google Scholar 

  • Hatton PJ, Cummins I, Cole DJ, Edwards R (1999) Glutathione transferases involved in herbicide detoxification in the leaves of Setaria faberi (giant foxtail). Physiol Plant 105:9–16

    Article  CAS  Google Scholar 

  • Hatzios KK, Burgos N (2004) Metabolism-based herbicide resistance: regulation by safeners. Weed Sci 52:454–467

    Article  CAS  Google Scholar 

  • Hatzioz KK (1997) Regulation of enzymatic systems detoxifying xenobiotics in plants: a brief overview and directions for future research. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Hu T, Qv X, Xiao G, Huang X (2009) Enhanced tolerance to herbicide of rice plants by over-expression of a glutathione S-transferase. Mol Breed 24:409–418

    Article  CAS  Google Scholar 

  • Ivanov SV, Alexieva VS, Karanov EN (2005) Cumulative effect of low and high atrazine concentrations on Arabidopsis thaliana plants. Russ J Plant Physiol 52(2):213–219

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Inès J, Al-Juburi HJ, Hong-Bo ZS, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  Google Scholar 

  • Jensen KIN, Stephenson GR, Hunt LA (1977) Detoxification of atrazine in three Gramineae subfamilies. Weed Sci 25:212–220

    CAS  Google Scholar 

  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33470

    Article  PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  CAS  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Article  PubMed  CAS  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Article  PubMed  CAS  Google Scholar 

  • Klapheck S (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plant 74:727–732

    Article  CAS  Google Scholar 

  • Klapheck S, Chrost B, Starke J, Zimmermann H (1992) Gammaglutamylcysteinylserine – a new homologue of glutathione in plants of the family Poaceae. Bot Acta 105:174–179

    CAS  Google Scholar 

  • Kömives T, Gulner G (2000) Phytoremediation. In: Wilkinson R (ed) Plant–environment interactions. Marcel Dekker Inc., New York, pp 437–452

    Google Scholar 

  • Kranner I, Birtic S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165

    Article  PubMed  CAS  Google Scholar 

  • Lalova M (1967) The effect of triazine herbicides on the SH groups in plants. Compt rend Acad Bulg Sci 20:229–231

    CAS  Google Scholar 

  • Letouze A, Gasquez J (2003) Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosuroides Huds.). Agronomie 23:601–608

    Article  CAS  Google Scholar 

  • Leustek T, Martin M, Bick J, Davies J (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  Google Scholar 

  • Liu Z-J, Zhang X-L, Bai J-G, Suo B-X, Xu P-L, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hort 121:138–143

    Article  CAS  Google Scholar 

  • Loyall L, Uchida K, Braun S, Furuya M, Frohnmeyer H (2000) Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12:1939–1950

    PubMed  CAS  Google Scholar 

  • Marcacci S, Raveton M, Ravanel P, Schwitzgúebel J-P (2006) Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ Exp Bot 56:205–215

    Article  CAS  Google Scholar 

  • Martin NM, Saladores PH, Lambert E, Hudson AO, Leustek T (2007) Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol 144:1715–1732

    Article  PubMed  CAS  Google Scholar 

  • May M, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  • May MJ, Leaver CJ (1994) Arabidopsis thaliana cγ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci USA 91:10059–10063

    Article  PubMed  CAS  Google Scholar 

  • Meister A (1988) On the discovery of glutathione. Trends Biochem Sci 13(5):185–188

    Article  PubMed  CAS  Google Scholar 

  • Meuwly P, Thibault P, Rauser WE (1993) Gamma-glutamylcysteinylglutamic acid – a new homolog of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472–476

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–57

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  PubMed  CAS  Google Scholar 

  • Milligan AS, Daly A, Parry MAJ, Lazzeri PA, Jepson I (2001) The expression of a maize glutathione S-transferase gene in transgenic wheat confers herbicide tolerance, both in planta and in vitro. Mol Breed 7:301–315

    Article  CAS  Google Scholar 

  • Miteva L (2005) Glutathione and glutathione S-transferase – physiological function in plants, grown on normal and stress conditions. Plant Sci 42:483–494 (In Bulgarian)

    CAS  Google Scholar 

  • Miteva L, Ivanov S, Alexieva V (2003) Comparative effect of 2, 4-D on the glutathione levels, glutathione-S-transferase and glutathione reductase activities in pea (Pisum sativum L.) and wheat (Triticum aestivum L.). Compt rend Acad Bulg Sci 56:53–58

    CAS  Google Scholar 

  • Miteva L, Ivanov S, Alexieva V, Karanov E (2004) Effect of Atrazine on Glutathione Levels, Glutathione-S-Transferase and Glutathione Reductase Activities in Pea and Wheat Plants. Plant Prot Sci 40:16–20

    Google Scholar 

  • Miteva L, Tsoneva J, Ivanov S, Alexieva V (2005) Alterations of the content of hydrogen peroxide and malondialdehyde and the activity of some antioxidant enzymes in the roots and leaves of pea and wheat plants exposed to glyphosate. Compt rend Acad Bulg Sci 58:733–738

    Google Scholar 

  • Miteva LP-E, Ivanov SV, Alexieva VS (2010) Alterations in glutathione pool and some related enzymes in leaves and roots of pea plants treated with the herbicide glyphosate. Russ J Plant Physiol 57:131–136

    Article  CAS  Google Scholar 

  • Moskova I, Todorova D, Alexieva V, Ivanov S, Sergiev I (2009) Effect of exogenous hydrogen peroxide on enzymatic and nonenzymatic antioxidants in leaves of young pea plants treated with paraquat. Plant Growth Regul 57:193–202

    Article  CAS  Google Scholar 

  • Nemat Alla M, Badawi A-H M, Hassan NM, El-Bastawisy ZM, Badran EG (2008) Herbicide tolerance in maize is related to increased levels of glutathione and glutathione-associated enzymes. Acta Physiol Plant 30:371–379

    Article  Google Scholar 

  • Nemat Alla M, Hassan NM (2008) Recognition, implication and management of plant resistance to herbicides. Am J Plant Physiol 3:50–66

    Article  Google Scholar 

  • Nemat Alla MM, Hassan NM (2006) Changes of antioxidants levels in two maize lines following atrazine treatments. Plant Physiol Biochem 44:202–210

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264:98–110

    Article  PubMed  CAS  Google Scholar 

  • Nutricati E, Miceli A, Blando F, De Bellis L (2006) Characterization of two Arabidopsis thaliana glutathione-S-transferases. Plant Cell Rep 25:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol 148:1603–1613

    Article  PubMed  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Zhao P, Xiang C, Oliver DJ (2007) Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J 49:878–888

    Article  PubMed  CAS  Google Scholar 

  • Owen MD, Zelaya IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61:301–311

    Article  PubMed  CAS  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  PubMed  CAS  Google Scholar 

  • Preston C (2004) Herbicide resistance in weeds endowed by enhanced detoxification: complications for management. Weed Sci 52:448–453

    Article  CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    CAS  Google Scholar 

  • Rennenberg H (2001) Glutathione – an ancient metabolite with modern tasks. In: Grill D, Tausz M, De Кок L (eds) Significance of glutathione in plant adaptation to the environment, vol 2, Handbook series of plant ecophysiology. Kluwer, Dordrecht, The Netherlands, pp 1–12

    Chapter  Google Scholar 

  • Rennenberg H, Herschbach C, Haberer K, Kopriva S (2007) Sulfur metabolism in plants: are trees different? Plant Biol 9:620–637

    Article  PubMed  CAS  Google Scholar 

  • Rüegsegger A, Brunold C (1992) Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99:428–433

    Article  PubMed  Google Scholar 

  • Schafer FO, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  • Schröder P (2001) The role of glutathione and glutathione S-transferases in plant reaction and adaptation to xenobiotics. In: Grill D, Tausz M, De Kok L (eds) Significance of glutathione in plant adaptation to the environment, vol 2, Hand book series of plant ecophysiology. Kluwer, Dordrecht, The Netherlands, pp 155–183

    Chapter  Google Scholar 

  • Schröder P (2007) Exploiting plant metabolism for the phytoremediation of organic xenobiotics. In: Willey N (ed) Phytoremediation: methods and reviews. Humana, Totowa, NJ, pp 254

    Google Scholar 

  • Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pest Biochem Physiol 85:139–146

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley V, Dowd C (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  PubMed  CAS  Google Scholar 

  • Skipsey M, Cummins I, Andrews CJ, Jepson I, Edwards R (2005) Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate. Plant Biotech J 3:409–420

    Article  CAS  Google Scholar 

  • Smith AP, DeRidder BP, Guo W-J, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, KellÅ‘s T, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditiond. Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Tharayil-Santhakumar N (2003) Mechanism of herbicide resistance in weeds. WeedScience.org, pp. 2. http://www.weedscience.org/in.asp)

    Google Scholar 

  • Todorova D (2003) Ethilene mutants of Arabidopsis thaliana L Heynh. Plant Sci 40:483–490 (In Bulgarian)

    CAS  Google Scholar 

  • Verkleij JAC, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguébel J-P, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22

    Article  CAS  Google Scholar 

  • Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646

    Article  CAS  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Oliver DJ (1996) Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol Biol 31:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Wonisch W, Schaur R (2001) Chemistry of glutathione. In: Grill D, Tausz M, De Kok L (eds) Significance of glutathione in plant adaptation to the environment, vol 2, Handbook series of plant ecophysiology. Kluwer, Dordrecht, The Netherlands, pp 13–26

    Chapter  Google Scholar 

  • Yang X, Sun W, Liu J-P, Liu Y-J, Zeng Q-Y (2009) Biochemical and physiological characterization of a tau class glutathione transferase from rice (Oryza sativa). Plant Physiol Biochem 47:1061–1068

    Article  PubMed  Google Scholar 

  • Yuan JS, Tranel PJ, Stewart CN Jr (2007) Non-target-site herbicide resistance: a family buisiness. Trends Plant Sci 12:6–13

    Article  PubMed  CAS  Google Scholar 

  • Zhang O, Riechers DE (2004) Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings. Proteomics 4:2058–2071

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zornitsa Ivanova Katerova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Katerova, Z.I., Miteva, L.PE. (2010). Glutathione and Herbicide Resistance in Plants. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_6

Download citation

Publish with us

Policies and ethics