Skip to main content

Coordinate Role of Ascorbate–Glutathione in Response to Abiotic Stresses

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

Glutathione (GSH), the tripeptide (nonprotein) thiol (γ-glutamyl cysteinyl glycine) and ascorbic acid (AsA, vitamin C) are the most prominent and worth functional low molecular weight soluble antioxidants in plant cells. Environmental fluctuations can lead the plants/crops to abiotic stress conditions. Thus a prompt and effective response, involving many genes and biochemical–molecular mechanism to cope with these conditions is inevitable. In response to these stresses, the ratio of reduced glutathione (GSH) and oxidized form of glutathione (GSSG) tends to decrease due to the oxidation of GSH during the detoxification of reactive oxygen species and changes in its metabolism, which leads to the activation of various defence mechanisms through a redox signalling pathway, including several oxidants, antioxidants, and stress hormones. Glutathione along with AsA plays a pivotal role in protecting cell function. They detoxify H2O2 in the AsA–GSH cycle and are involved in cellular redox regulation and buffering. The ascorbate and glutathione (AsA/DHA and GSH/GSSG) redox pairs are often found to be coupled in plants favours net electron flow from reduced glutathione to dehydroascorbate (DHA). The antioxidation property of ascorbate and glutathione plays a key role in the redox signal transduction process. The plausible reasons could be: (a) signal transduction is influenced as ascorbate and glutathione regulate the cellular H2O2. (b) As these metabolites are responsible for regulating gene expression, so the compartment-specific variations in AsA/DHA and GSH/GSSG ratios may have substantial significance for redox signalling. The aim of present chapter is: firstly, to enlighten the pivotal role of AsA and GSH in plant metabolism and tolerance to abiotic stresses such as oxidative, drought, salinity, heat, and cold stress. Secondly, to emphasize the importance of identification and analysis of AsA–GSH genes responsible for multiple stress tolerance in plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. Annu Rev Plant Physiol Mol Biol 50:601–639

    CAS  Google Scholar 

  • Anderson JV, Chevone BI, Hess JL (1992) Seasonal variation in the antioxidant system of eastern white pine needles: evidence for thermal dependence. Plant Physiol 98:501–508

    PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B 355:1419–1431

    CAS  Google Scholar 

  • Asada K, Takahashi M (1978) Production and scavenging of activated oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier Science Publishers, Amsterdam, The Netherlands, pp 227–287

    Google Scholar 

  • Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    PubMed  CAS  Google Scholar 

  • Beeor-Tzahar T, Ben-Hayyim G, Holland D, Faltin Z, Eshdat Y (1995) A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett 366:151–155

    PubMed  CAS  Google Scholar 

  • Bielawski W, Joy KW (1986) Reduced and oxidised glutathione and glutathione reductase activity in tissues of Pisum sativum. Planta 169:267–272

    CAS  Google Scholar 

  • Blum A (1988) Plant Breeding for Stress Environment. CRC Press, Boca Raton, FL

    Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations – making metabolism move. Curr Opin Plant Biol 1:267–274

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Qingqiu G, Pinghua L, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inźe D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Chemistry and biochemistry of ascorbic acid. In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp 91–115

    Google Scholar 

  • Burns JJ (1957) Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature 180:553

    PubMed  CAS  Google Scholar 

  • Chang CCC, Ball L, Fryer MJ, Baker NR, Karpinski S, Mullineaux PM (2004) Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J 38:499–511

    PubMed  CAS  Google Scholar 

  • Chapman D (1998) Phospholipase activity during plant growth anddevelopment and in response to environmental stress. Trends Plant Sci 3:419–426

    Google Scholar 

  • Chen WJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Choi HI, Hong JH, Ha J, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione deficient, cadmium-sensitive mutant, cad2-1 of Arabidopsis thaliana is deficient in g-glutamylcysteine synthetase. Plant J 16:73–78

    PubMed  CAS  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aus J Plant Physiol 25:665–671

    CAS  Google Scholar 

  • Creissen GP, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux PM (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1291

    PubMed  CAS  Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul 40:81–88

    CAS  Google Scholar 

  • Demiral T, Turkan (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23:547–552

    CAS  Google Scholar 

  • Desikan R, Mackerness SA-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    PubMed  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc Natl Acad Sci USA 85:6738–6742

    PubMed  CAS  Google Scholar 

  • Fadzilla NM, Finch RP, Burdon RH (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J Exp Bot 48:325–331

    CAS  Google Scholar 

  • Fahmy AS, Mohamed TM, Mohamed SA, Saker MM (1998) Effect of salt stress on antioxidant activities in cell suspension cultures of cantaloupe (Cucumis melo). Egypt J Physiol Sci 22:315–326

    CAS  Google Scholar 

  • Forti G, Elli G (1995) The function of ascorbic acid in photosynthetic phosphorylation. Plant Physiol 109:1207–1211

    PubMed  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of photooxidative stresses and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, pp 1–42

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005a) Oxidant and antioxidant signaling in plants a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005b) Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111–124

    PubMed  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    PubMed  CAS  Google Scholar 

  • Gaber A, Yoshimura K, Tamoi M, Takeda T, Nakano Y, Shigeoka S (2004) Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol 136:2855–2861

    PubMed  CAS  Google Scholar 

  • Gamble PE, Burke JJ (1984) Effect of water stress on the chloroplastic antioxidant system. I. Alterations in glutathione reductase activity. Plant Physiol 76:615–621

    PubMed  CAS  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    PubMed  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinkas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    PubMed  CAS  Google Scholar 

  • Gullner G, Kómíves T (2001) The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. In: Grill D, Tausz M, De Kok LJ (eds) Significance of glutathione to plant adaptation to the environment. Kluwer, Dordrecht, The Netherlands, pp 207–239

    Google Scholar 

  • Hare PD, Cress WA, Van SJ (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  Google Scholar 

  • Hausladen A, Alscher RG (1993) Glutathione. In: Alscher RG (ed) Antioxidants in higher plants. CRC Press, Boca Raton, FL, pp 1–30

    Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, Del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    CAS  Google Scholar 

  • Hernández JA, Ferrer MA, Jime’nez A, Barcelo’ AR, Sevilla F (2001) Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    PubMed  Google Scholar 

  • Hess JL (1994) Free radical scavenging. In: Alscher RG, Wellburn AR (eds) Plant responses to the gaseous environment. Chapman & Hall, London, pp 165–180

    Google Scholar 

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, Oxford

    Google Scholar 

  • Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3:61–66

    Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    CAS  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (Dec 1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kiddle G, Pastori GM, Bernard S, Pignocchi C, Antoniw J, Verrier PJ, Foyer CH (2003) Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana. Antioxid Redox Signal 5:23–32

    PubMed  CAS  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    CAS  Google Scholar 

  • Link G, Tiller K, Baginsky S (1997) Glutathione, a regulator of chloroplast transcription. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer, Dordrecht, The Netherlands, pp 125–137

    Google Scholar 

  • lnzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotech 6:153–158

    Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20

    PubMed  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Biol 48:399–429

    CAS  Google Scholar 

  • Meyer A (2009) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Google Scholar 

  • Meyer AJ, Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130:1927–1937

    PubMed  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003a) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003b) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    PubMed  CAS  Google Scholar 

  • Molina A, Bueno P, Marín MC, Rosales MPR, Belver A, Venema K, Donaire JP (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–415

    CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    CAS  Google Scholar 

  • Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J 20:381–388

    PubMed  CAS  Google Scholar 

  • Navari-Izzo F, Meneguzzo S, Loggini B, Vazzana C, Sgherri CLM (1997) The role of the glutathione system during dehydration of Boea hygroscopica. Physiol Plant 99:23–30

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    PubMed  CAS  Google Scholar 

  • Nijs D, Kelley PM (1991) Vitamins C and E donate single hydrogen atoms in vivo. FEBS Lett 284:147–151

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    PubMed  CAS  Google Scholar 

  • Op den Camp RGL, Przbyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    PubMed  CAS  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis. Curr Opin Plant Biol 5:193–198

    PubMed  CAS  Google Scholar 

  • Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    PubMed  CAS  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes controlling development through hormone signaling. Plant Cell 15:939–951

    PubMed  CAS  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    CAS  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    CAS  Google Scholar 

  • Price AM, Atherton NM, Hendry GAF (1989) Plants under drought-stress generate activated oxygen. Free Radic Res Commun 8:61–66

    PubMed  CAS  Google Scholar 

  • Rawlins MR, Leaver CJ, May MJ (1995) Characterisation of a cDNA encoding Arabidopsis glutathione synthetase. FEBS Lett 376:81–86

    PubMed  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Over expression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotech 15:988–991

    CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Rep 41:1229–1234

    CAS  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    PubMed  CAS  Google Scholar 

  • Sairam PK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    CAS  Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    PubMed  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    PubMed  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005a) Adaptation of higher plants to stresses and stress signal transduction. Acta Ecol Sin 25:1871–1882

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005b) Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits. Biointerfaces 42:187–195

    PubMed  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA, Sun Q, Hu ZM (2005c) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Biointerfaces 43:221–227

    CAS  Google Scholar 

  • Shao HB, Chu LY, Zhao CX, Guo QJ, Liu XA, Ribaut JM (2006) Plant gene regulatory net work system under abiotic stress. Acta Biol Sezeged 50:1–9

    Google Scholar 

  • Shao HB, Jiang SY, Li FM, Chu LY, Zhao CX, Shao MA, Zhao XN, Li F (2007) Some advances in plant stress physiology and their implications in the systems biology era. Biointerfaces 54:33–36

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Sreenivasulu N, Grimma B, Wobusa U, Weschkea W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    CAS  Google Scholar 

  • Srivalli B, Sharma G, Khanna-Chopra R (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–512

    CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    PubMed  CAS  Google Scholar 

  • Sumithra K, Jutur PP, Dalton CB, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50:11–22

    CAS  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidaes and glutathione reductase in roots of rice seedlings in respons to NaCl and H2O2. J Plant Physiol 162:291–299

    PubMed  CAS  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) – differential responses in salt tolerant and sensitive varieties. Plant Sci 165:1411–1418

    CAS  Google Scholar 

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    PubMed  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reicheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS/ CADMIUM SENSITIVE 2 gene defines a glutathione dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Biol 42:579–620

    CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210

    PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    PubMed  CAS  Google Scholar 

  • Zimmermann S, Sentenac H (1999) Plant ion channels: from molecular structures to physiological functions. Curr Opin Plant Biol 2:477–482

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of our lab was supported by the Agricultural Ministry of China (the program code: 2009ZX08009-076B), Natural Science Foundation of China (the program code: 30671339 and 30971700), National High-Tech R&D Program (the program code: 2006AA10A113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shamsi, I.H., Jiang, S., Hussain, N., Lin, X., Jiang, L. (2010). Coordinate Role of Ascorbate–Glutathione in Response to Abiotic Stresses. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_12

Download citation

Publish with us

Policies and ethics