Skip to main content

Involvement of AsA/DHA and GSH/GSSG Ratios in Gene and Protein Expression and in the Activation of Defence Mechanisms Under Abiotic Stress Conditions

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

In a persistently changing environment there are many adverse abiotic stress conditions such as cold, heat, drought, salinity, heavy metal toxicity and oxygen deprivation, which remarkably influence plant growth and crop production. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS) during various processes associated with abiotic stress. Moreover, the generation of ROS is the main means for higher plants to transmit cellular signalling information concerning the changing environmental conditions. Therefore, plants have evolved inducible redox state-based sensing mechanisms that are activated or amplified in response to adverse environmental conditions. Ascorbate and glutathione, the key cellular redox buffers, are used for both detoxification of ROS and transmission of redox signals. In recent years, it has become clear that abiotic stress conditions induce changes in the reduction/oxidation (redox) state of signalling molecules, which in turn modulate gene and protein expression to increase plant acclimation to abiotic stress. This important redox state-related branch of science has given several clues in understanding the adaptive plant responses to different stressful regimes. In this chapter, an overview of the literature is briefly presented in terms of the main function of ascorbate and glutathione in plant cells. Further more, we describe how important forms of abiotic stress regulate the expression of genes and proteins involved in the ascorbate and glutathione redox sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht G, Wiedenroth EM (1994) Protection against activated oxygen following re-aeration of hypoxically pre-treated wheat roots. The response of the glutathione system. J Exp Bot 45:449–455

    CAS  Google Scholar 

  • Al-Ghamdi AA (2009) Evaluation of Oxidative Stress Tolerance in Two Wheat (Triticum aestivum) Cultivars in Response to Drought. Intern J Agric Biol, 11:7–12

    CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    PubMed  CAS  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464

    CAS  Google Scholar 

  • Amor NB, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126:446–457

    Google Scholar 

  • Anderson JA, Padhye SR (2004) Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat-stressed Vinca and sweet pea leaves. J Am Soc Horti Sci 129:54–59

    CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008a) Sulphur protects mustard (Brasasica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 54:271–279

    CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008b) Ontogenic variation in response of Brassica campestris L. to cadmium toxicity. J Plant Interact 3:189–198

    CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M (2008c) Responses of components of antioxidant system in moongbean [Vigna radiata (L.) Wilczek] genotypes to cadmium stress. Commun Soil Sci Plant Anal 39:2469–2483

    CAS  Google Scholar 

  • Anjum NA, Umar S, Singh S, Nazar R, Khan NA (2008d) Sulfur assimilation and cadmium tolerance in plants. In: Khan NA et al (eds) Sulfur assimilation and abiotic stress in plants. Springer-Verlag, Berlin, Heidelberg, pp 271–302

    Google Scholar 

  • Anjum NA, Umar S, Iqbal M, Khan NA (2010) Cadmium causes oxidative stress in moongbean [Vigna radiata (L.) Wilczek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism. Russ J Plant Physiol 58:00–00

    Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, FL, pp 77–104

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotech Adv 27:84–93

    CAS  Google Scholar 

  • Baccouch S, Chaoui A, El Ferjani E (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J Plant Nutr 24:1085–1097

    CAS  Google Scholar 

  • Badiani M, Paolacci AR, Fusari A, Dovidio R, Scandalios JG, Porceddu E, Sermanni GG (1997) Non-optimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. II. Short-term acclimation. J Plant Physiol 151:409–421

    CAS  Google Scholar 

  • Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:221–1227

    Google Scholar 

  • Baena-Gonzalez E, Baginsky S, Mulo P, Summer H, Aro E-M, Link G (2001) Chloroplast transcription at different light intensities. Glutathione-mediated phosphorylation of the major RNA polymerase involved in redox regulated organellar gene expression. Plant Physiol 127:1044–1052

    PubMed  CAS  Google Scholar 

  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28:1012–1020

    CAS  Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30:1107–1125

    PubMed  CAS  Google Scholar 

  • Barnes D, Mayfield SP (2003) Redox control of posttranslational processes in the chloroplast. Antioxid Redox Signal 5:89–94

    PubMed  CAS  Google Scholar 

  • Bartoli C, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    PubMed  CAS  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    CAS  Google Scholar 

  • Bick JA, Setterdahl AT, Knaff DB, Chen Y, Pitcher LH, Zilinskas BA, Leustek T (2001) Regulation of the plant-type 5Ά-adenylylsulfate reductase by oxidative stress. Biochem 40:9040–9048

    CAS  Google Scholar 

  • Biemelt S, Keetman U, Albrecht G (1998) Re-aeration following hypoxia or anoxia leads to activation of the antioxidant defence system in roots of wheat seedlings. Plant Physiol 116:651–658

    PubMed  CAS  Google Scholar 

  • Blokhina OB, Virolainen E, Fagerstedt KV, Hoikkala A, Wähälä K, Chirkova TV (2000) Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiol Plant 109:396–403

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt K (2003) Antioxidant, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    PubMed  CAS  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    PubMed  CAS  Google Scholar 

  • Burritt D, Mackenzie S (2003) Antioxidant metabolism during acclimation of Begonia x erythrophylla to high light levels. Ann Bot 91:783–794

    PubMed  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    CAS  Google Scholar 

  • Cánovas D, Vooijs R, Schat H, De Lorenzo V (2004) The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279:51234–51240

    PubMed  Google Scholar 

  • Chalapathi Rao ASV, Reddy A (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA et al (eds) Sulfur assimilation and abiotic stress in plants. Springer-Verlag, Berlin, Heidelberg, pp 111–147

    Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem. doi:10.1016/j.plaphy.2010.01.009

    PubMed  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani E (1997) Cadmium an Zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci 127:139–147

    CAS  Google Scholar 

  • Chaparzadeh N, Lucia D’Amico M, Khavari-Nejad RA, Izzo R, Navari-Izzo F, (2004) Antioxidative responses of Calendula offıcinalis under salinity conditions. Plant Physiol Biochem 42: 695–701

    PubMed  CAS  Google Scholar 

  • Chauhan S (2005) Physiological and molecular basis of heat tolerance with emphasis on oxidative stress metabolism in wheat. PhD Thesis. HNB Garhwal University, Srinagar, Uttaranchal, India

    Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signalling and stomatal movement. Plant Cell 16:1143–1162

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2008) Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance. J Biol Chem 283:21347–21361

    PubMed  CAS  Google Scholar 

  • Cheng FY, Burkey KO, Robinson JM, Booker FL (2007) Leaf extracellular ascorbate in relation to O3 tolerance of two soybean cultivars. Environ Pollut 150:355–362

    PubMed  CAS  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthase. J Plant Physiol 163:319–332

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:59–182

    Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Austr J Plant Physio 25:665–671

    CAS  Google Scholar 

  • Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109:203–212

    PubMed  CAS  Google Scholar 

  • Corpas F, Barroso J, del Río L (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    PubMed  CAS  Google Scholar 

  • Creissen GP, Edwards EA, Mullineaux PM (1994) Glutathione reductase and ascorbate peroxidase. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, FL, pp 343–364

    Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Production, scavenging and signalling. Plant Signal Behav 3:156–165

    PubMed  Google Scholar 

  • Dai F, Huang Y, Zhou M, Zhang G (2009) The influence of cold acclimation on antioxidant enzymes and antioxidants in sensitive and tolerant barley cultivars. Biol Plantar 53:257–262

    CAS  Google Scholar 

  • Dalmia A, Sawhney V (2004) Antioxidant defence mechanism under drought stress in wheat seedlings. Physiol Mol Biol – Plants 10:109–114

    CAS  Google Scholar 

  • Darkó E, Ambrus H, Stefanovits-Bányai E, Fodor J, Bakos F, Barnabás B (2004) Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalse during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul 40:81–88

    CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46:95–108

    CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    PubMed  CAS  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defence systems and praline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • D’Haese D, Vandermeiren K, Asard H Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632

    Google Scholar 

  • Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (ed) Heavy metal stress in plants: from molecules to ecosystems. Springer-Verlag, Berlin, pp 73–79

    Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S (2005) Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. J Plant Physiol 162:529–536

    PubMed  CAS  Google Scholar 

  • Drazkiewicz M, Skorzynska-Polit E, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202

    CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    PubMed  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu CP, Foyer CH, de Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signalling and diurnal regulation. Plant Cell 15:1212–1226

    PubMed  CAS  Google Scholar 

  • Edwards EA, Enard C, Creissen GP, Mullineaux PM (1994) Synthesis and properties of glutathione reductase in stressed peas. Planta 192:137–143

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    PubMed  CAS  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    CAS  Google Scholar 

  • Eskew DL, Welch RM, Norvell WA (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:621–623

    PubMed  CAS  Google Scholar 

  • Eskew DL, Welch RM, Norvell WA (1984) Nickel in higher plants: further evidence for an essential role. Plant Physiol 76:671–693

    Google Scholar 

  • Fadzilla NM, Robert P, Finch RP, Burdon RH (1997) Salinity oxidative stress and antioxidant response in shoot cultures of rice. J Exp Bot 48: 325–331

    Google Scholar 

  • Fahmy AS, Mohamed TM, Mohamed SA, Saker MM (1998) Effect of salt stress on antioxidant activities in cell suspension cultures of cantaloupe (Cucumis melo). Egyp J Physiol Sci 22: 315–326

    Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–342

    CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugarcane. Biol Plant 41:91–97

    Google Scholar 

  • Fortunato A, Lidon F, Batista-Santos AP, Leitão E, Pais I, Ribeiro A, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidant system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    PubMed  CAS  Google Scholar 

  • Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot 57:3933–3943

    PubMed  CAS  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    PubMed  CAS  Google Scholar 

  • Foyer C, Noctor G (2005a) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005b) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Foyer CH, Souruau N, Perret S, Lelandais M and Kunert KJ, Provust C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    PubMed  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyper accumulators W inside box sign. Plant Cell 16:2176–2191

    PubMed  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science, 121:151–159

    PubMed  CAS  Google Scholar 

  • Garnczarska M (2005) Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Biochem 43:583–590

    PubMed  CAS  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J 30:541–553

    PubMed  CAS  Google Scholar 

  • Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild-type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685–701

    PubMed  CAS  Google Scholar 

  • Gossett DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione. Plant Physiol 112:803–809

    PubMed  Google Scholar 

  • Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol 112:1631–1640

    PubMed  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinkas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    PubMed  CAS  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidant system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    PubMed  CAS  Google Scholar 

  • Guri A (1983) Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can J Plant Sci 63:733–737

    CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WH, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbet CS (1999) Phytochelatin synthase genes from Arabidopsis and yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    PubMed  CAS  Google Scholar 

  • Hanna PM, Mason RP (1992) Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Arch Biochem Biophys 295:205–213

    PubMed  CAS  Google Scholar 

  • Hatata MM, Abdel-Aal EA (2008) Oxidative Stress and Antioxidant Defence Mechanisms in Response to Cadmium Treatments, American-Eurasian J Agric Environ Sci 4:655–669

    Google Scholar 

  • Hausladen A, Alscher RG (1993) Glutathione. In: Alscher RG, Hess J (eds) Antioxidants in higher plants. CRC Press, Boca Raton, FL, pp 1–30

    Google Scholar 

  • Heggestad HE (1991) Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use as indicators of ozone. Environ Pollut 74:264–291

    PubMed  CAS  Google Scholar 

  • Heath RL (1994) Alterations of plant metabolism by ozone exposure. ln RG Alscher, AR Wellburn, (eds) Plant Response to the Gaseous Environment: Molecular, Metabolic and Physiological Aspects. Chapman and Hall, London, pp 121–145

    Google Scholar 

  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol and Biochem 40:691–696

    CAS  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, Del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Planta 89:103–110

    CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell & Environ 23:853–862

    CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113

    CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98:685–692

    CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241

    CAS  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidant system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–84

    CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    PubMed  CAS  Google Scholar 

  • Jiang MY, Zhang JH (2002) Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    PubMed  CAS  Google Scholar 

  • Kalbin G, Ohlsson AB, Berglund T, Rydström J, Strid A (1997) UV-B radiation causes changes in intracellular levels of nicotinamide, trigonelline and glutathione in Pisum sativum leaves. Phyton – Ann Rei Botan 37:115–124

    CAS  Google Scholar 

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794

    CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    PubMed  CAS  Google Scholar 

  • Khan NA, Anjum NA, Nazar R, Iqbal N (2009) Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russ J Plant Physiol 56:743–750

    Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    PubMed  CAS  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    PubMed  CAS  Google Scholar 

  • Kollist H, Moldau H, Mortensen L, Rasmussen SK, Jorgensen LB (2000) Ozone flux to plasmalemma in barley and wheat is controlled rather by stomata than by direct reaction of ozone with apoplastic ascorbate. J Plant Physiol 156:645–651

    CAS  Google Scholar 

  • Kopriva S, Jones S, Koprivova A, Suter M, von Ballmos P, Brander K, Fluckiger H (2001) Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays. Plant Biol 3:24–31

    CAS  Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    PubMed  CAS  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulphur dioxide. Plant Mol Biol 29:479–489

    PubMed  CAS  Google Scholar 

  • Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung S, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109–2117

    CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signalling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    PubMed  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    PubMed  CAS  Google Scholar 

  • Lascano HR, Antonicelli GE, Luna CM, Melchiorre MN, Gomez LD, Racca RW, Trippi VS, Casano LM (2001) Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Austral J Plant Physiol 28:1095–1102

    CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    PubMed  CAS  Google Scholar 

  • Levitt J (1962) A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J Theor Biol 3:355–391

    CAS  Google Scholar 

  • Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230:39–51

    PubMed  CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    CAS  Google Scholar 

  • Link G, Tiller K, Baginsky S (1997) Glutathione, a regulator of chloroplast transcription. In KK Hatzios, (eds) Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 125–137

    Google Scholar 

  • Link G (2003) Redox regulation of chloroplast transcription. Antioxid Redox Signal 5:79–87

    PubMed  CAS  Google Scholar 

  • Liu F, Van Toai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    PubMed  CAS  Google Scholar 

  • Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003). Transgenic overproduction of gluatathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae) from photoinhibition during growth under chilling conditions. Am J Bot 90:1400–1403

    PubMed  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidant defence system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099

    PubMed  CAS  Google Scholar 

  • Ma YH, Ma FW, Zhang JK, Li MJ, Wang YH, Liang D (2008) Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Sci 175:761–766

    CAS  Google Scholar 

  • Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone fumigated pea leaves. Plant Physiol 100:138–145

    PubMed  CAS  Google Scholar 

  • Mahalingam R, Jambunathan N, Gunjan SK, Faustin E, Weng H, Ayoubi P (2006) Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant Cell Environ 29:1357–1371

    PubMed  CAS  Google Scholar 

  • Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2010) Arabidopsis chlAPXs contribute not only to photoprotection, but also to the regulation of H2O2-responsive genes in response to photooxidative stress. Plant Cell Physiol 51:190–200

    PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, van Montagu M, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorsab MW, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill.). Plant Sci 127:129–137

    CAS  Google Scholar 

  • Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidant responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274–280

    CAS  Google Scholar 

  • Meyer A (2008) The integration of glutathione homeostasis and redox signalling. J Plant Physiol 165:1390–1403

    PubMed  CAS  Google Scholar 

  • Mieda T, Yabuta Y, Rapolu M, Motoki T, Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Feedback inhibition of spinach l-galactose dehydrogenase by l-ascorbate. Plant Cell Physiol 45:1271–1279

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    PubMed  CAS  Google Scholar 

  • Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate–glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 110:42–51

    CAS  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gómez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2000) Evaluation of the defence system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    PubMed  CAS  Google Scholar 

  • Moldau H, Bichele I (2002) Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces. Planta 214:484–487

    PubMed  CAS  Google Scholar 

  • Molina A, Bueno P, Marín MC, Rosales MPR, Belver A, Venema K, Donaire JP (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytolog 156:409–415

    CAS  Google Scholar 

  • Muller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 58:459–481

    Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    PubMed  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    PubMed  CAS  Google Scholar 

  • Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247–2257

    CAS  Google Scholar 

  • Nali C, Pucciariello C, Mills G, Lorenzini G (2005) On the different sensitivity of white clover clones to ozone: physiological and biochemical parameters in a multivariate approach. Water Air Soil Poll 164:137–153

    CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    CAS  Google Scholar 

  • Nieto-Sotelo J, Ho T-HD (1986) Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol 82:1031–1035

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Onodera A, Tominaga N (2006) Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere 63:1553–1559

    PubMed  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    PubMed  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Ogrzewalla K, Piotrowski M, Reinbothe S, Link G (2002) The plastid transcription kinase from mustard (Sinapis alba L.). A nuclear-encoded CK2-type chloroplast enzyme with redox-sensitive function. European. J Biochem 269:3329–3337

    CAS  Google Scholar 

  • Oidaira H, Sano S, Koshiba T, Ushimaru T (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. J Plant Physiol 156:811–813

    CAS  Google Scholar 

  • Ort DR, Becker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    PubMed  CAS  Google Scholar 

  • Padu E, Kollist H, Tulva I, Oksanen E, Moldau H (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment. New Phytol 165:131–143

    PubMed  CAS  Google Scholar 

  • Panchuk J, Volkov R, Schoffl F (2002) Heat Stress- and Heat Shock Transcription Factor- Dependent Expression and Activity of Ascorbate Peroxidase in Arabidopsis. Plant Physiol 129:838–853

    PubMed  CAS  Google Scholar 

  • Paradiso A, Berardino R, De Pinto MC, Sanità Di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    PubMed  CAS  Google Scholar 

  • Pasqualini S, Batini P, Ederli L, Porceddu C, Piccioni C, De Marchis F, Antonielli M (2001) Effects of short-term fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase. Plant Cell Environ 24:245–252

    CAS  Google Scholar 

  • Pasqualini S, Paolocci F, Borgogni A, Morettini R, Ederli L (2007) The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants. Plant Cell Environ 30:1545–1556

    PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defence transcripts and regulate genes that control development through hormone signalling. Plant Cell 15:939–951

    PubMed  CAS  Google Scholar 

  • Patra J, Panda BB (1998) A comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environ Pollut 101:99–105

    CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday A (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    PubMed  CAS  Google Scholar 

  • Pell EJ, Dann MS (1991) Multiple stress-induced foliar senescence and implications for wholeplant longevity. In: Monney HA, Winner WE, Pell EJ (eds) Responses of plants to multiple stresses. Academic, San Diego, CA, pp 389–403

    Google Scholar 

  • Piqueras A, Olmos E, Martińez-Solano JR, Hellín E (1999) Cd-induced oxidative burst in tobacco BY2 cells: time course, subcellular location and antioxidant response. Free Radic Res 31:33–38

    Google Scholar 

  • Plochl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467

    PubMed  CAS  Google Scholar 

  • Polle A (1997) Defence against photo-oxidative damage in plants. In JG Scandalios, (eds) Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 623–666

    Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase–ascorbate peroxidase–glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    PubMed  CAS  Google Scholar 

  • Polle A, Rennenberg H (1993) Significance of antioxidants in plant adaptation to environmental stress. In: Fowden L, Mansfield T, Stoddart J (eds) Plant adaptation to environmental stress. Chapman & Hall, London, pp 264–273

    Google Scholar 

  • Polle A, Chakrabarti K, Schurmann W, Rennenberg H (1990) Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of norway spruce (Picea abies L. Karst ). Plant Physiol 94:312–319

    PubMed  CAS  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    CAS  Google Scholar 

  • Price A, Lucas PW, Lea PJ (1990) Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J Exp Bot 41:1309–1317

    CAS  Google Scholar 

  • Ranieri A, Castagna A, Padu E, Moldau H, Rahi M, Soldatini GF (1999) The decay of O3 through direct reaction with cell wall ascorbate is not sufficient to explain the different degrees of O3-sensitivity in two poplar clones. J Plant Physiol 150:250–255

    Google Scholar 

  • Ranieri A, Castagna A, Soldatini GF (2000) Differential stimulation of ascorbate peroxidase isoforms by ozone exposure in sunflower plants. J Plant Physiol 156:266–271

    CAS  Google Scholar 

  • Ranieri A, Giuntini D, Ferraro F, Nali C, Baldan B, Lorenzini G, Soldatini GF (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Biochem 39:999–1008

    CAS  Google Scholar 

  • Ranieri A, Castagna A, Pacini J, Baldan B, Mensuali Sodi A, Soldatini GF (2003) Early production and scavenging of hydrogen peroxide in the apoplast of sunflowers plants exposed to ozone. J Exp Bot 54:2529–2540

    PubMed  CAS  Google Scholar 

  • Rao MV (1992) Cellular detoxifying mechanisms determine age dependent injury in tropical plants exposed to SO2. J Plant Physiol 140:733–740

    CAS  Google Scholar 

  • Rao MV, Hale B, Ormrod DP (1995) Amelioration of ozone induced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiol 109:421–432

    PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol 109:1141–1149

    PubMed  CAS  Google Scholar 

  • Reich RB, Amundson RG (1985) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566–570

    PubMed  CAS  Google Scholar 

  • Riekert van Heerden PD, Kruger GHJ (2002) Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J Plant Physiol 159:1077–1086

    Google Scholar 

  • Rivero RM, Ruiz JM, Romero L (2004) Oxidative metabolism in tomato plants subjected to heat stress. J Horti Sci Biotech 79:560–564

    CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gómez M, del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    CAS  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    PubMed  CAS  Google Scholar 

  • Saeidi-Sar S, Khavari-Nejad RA, Fahimi H, Ghorbanli M, Majd A (2007) Interactive effects of gibberellin A3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in glycine max seedlings under nickel stress. Russ J Plant Physiol 54:74–79

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  • Scebba F, Pucciarelli I, Soldatini GF, Ranieri A (2003) O3-induced changes in the antioxidant systems and their relationship to different degrees of susceptibility of two clover species. Plant Sci 165:583–593

    CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Sečenji M, Hideg E, Bebes A, Györgyey J (2010) Transcriptional differences in gene families of the ascorbate–glutathione cycle in wheat during mild water deficit. Plant Cell Rep 29:37–50

    PubMed  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidant defence system. Physiol Plant 129:519–528

    CAS  Google Scholar 

  • Sen Gupta A, Alsher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in Populus leaves. Plant Physiol 96:650–655

    CAS  Google Scholar 

  • Sgherri CLM, Navari-Izzo F (1995) Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol Plant 93:25–30

    CAS  Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiol Plant 104:169–174

    CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidant system. Physiol Plant 112:487–494

    PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signalling pathways in higher plant cells. Int J Biol Sci 4:8–14

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    PubMed  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    PubMed  CAS  Google Scholar 

  • Skorzynska-Polit E, Drazkiewicz M, Krupa Z (2003/4) The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana. Biol Plant 47:71–78

    CAS  Google Scholar 

  • Skutnik M, Rychter AM (2009) Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia. J Plant Physiol 166:926–937

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Google Scholar 

  • Smith AP, De Ridder BP, Guo WJ, Seeley EH, Regnier FE, Goldsbrough PB (2004) Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279:26098–26104

    PubMed  CAS  Google Scholar 

  • Sobrino-Plata J, Ortega-Villasante C, Flores-Cáceres ML, Escobar C, Del Campo FF, Hernández LE (2009) Differential alterations of antioxidant defences as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77:946–954

    PubMed  CAS  Google Scholar 

  • Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem 43:1082–1088

    PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Grimma B, Wobusa U, Weschkea W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    CAS  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2008) Role of glutathione in abiotic stress tolerance. In: Khan NA et al (eds) Sulfur assimilation and abiotic stress in plants. Springer-Verlag, Berlin, Heidelberg, pp 207–225

    Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula x P.alba) overexpressing glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot 50:365–374

    CAS  Google Scholar 

  • Stroinski A, Kubis J, Zielezinska M (1999) Effect of cadmium on glutathione reductase in potato tubers. Acta Physiol Planta 21:201–207

    CAS  Google Scholar 

  • Sumithra K, Jutur PP, Dalton CB, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. J Plant Growth Regul 50:11–22

    CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    CAS  Google Scholar 

  • Tabaldi LA, Cargnelutti D, Gonçalves JF, Pereira LB, Castro GY, Maldaner J, Rauber R, Rossato LV, Bisognin DA, Schetinger MR, Nicoloso FT (2009) Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets. Chemosphere 76:1402–1409

    PubMed  CAS  Google Scholar 

  • Tabata K, Takaoka T, Esaka M (2002) Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631–635

    PubMed  CAS  Google Scholar 

  • Tanaka K, Saji H, Kondo N (1988) Immunological properties of spinach glutathione reductase and inductive biosynthesis of the enzyme with ozone. Plant Cell Physiol 29:637–642

    CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Cho KY, Sung CK (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    PubMed  CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009a) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    PubMed  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Gr D (2009b) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    PubMed  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009c) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    CAS  Google Scholar 

  • Tao DL, Oquist G, Wingsle G (1998) Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobiology 37:38–45

    PubMed  CAS  Google Scholar 

  • Tausz M, Bytnerowicz A, Arbaugh MJ, Weidner W, Grill D (1999) Antioxidants and protective pigments of Pinus ponderosa needles at gradients of natural stresses and ozone in the San Bernardino Mountains in California. Free Radic Res 31:113–120

    Google Scholar 

  • Tausz M, Bytnerowicz A, Arbaugh MJ, Wonisch A, Grill D (2001) Biochemical response patterns in Pinus ponderosa trees at field plots in the San Bernardino Mountains (Southern California). Tree Physiol 21:329–336

    PubMed  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    PubMed  CAS  Google Scholar 

  • Tewari RK, Parma PK, Sharma N (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    PubMed  CAS  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    PubMed  CAS  Google Scholar 

  • Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537

    PubMed  CAS  Google Scholar 

  • Turkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant Populus acutifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci 168:223–231

    Google Scholar 

  • Ushimaru T, Maki Y, Sano S, Koshiba K, Asada K, Tsuji H (1997) Induction of enzymes involved in the ascorbate-dependent antioxidant system, namely ascorbate peroxidase, mono dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant Cell Physiol 38:541–549

    CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    PubMed  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    CAS  Google Scholar 

  • Veljovic-Jovanovic DS, Pignocchi C, Noctor G, Foyer HC (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    PubMed  CAS  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochem 57:701–710

    CAS  Google Scholar 

  • Vivekanandan M, Edwards GE (1987) Activation of NADP-malate dehydrogenase in C3 plants by reduced glutathione. Photosynth Res 14:113–124

    CAS  Google Scholar 

  • Walker MA, McKersie BD (1993) Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141:234–239

    CAS  Google Scholar 

  • Wang K (2005) Genetic acclimaton for freezing tolerance. ISB news report

    Google Scholar 

  • Willekens HD, Van Camp WV, Montagu M, Inze D, Langerbelts C, Sandermann H (1994) Ozone, sulfur dioxide and UV-B radiation have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol 106:1007–1014

    PubMed  CAS  Google Scholar 

  • Willekens HD, Inze M, Montagu MV, Camp WV (1995) Catalase in plants. Mol Breed 1:207–228

    CAS  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Skłodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219

    PubMed  CAS  Google Scholar 

  • Wójcik M, Pawlikowska-Pawlega B, Tukiendorf BA (2009) Physiological and ultrastructural changes in Arabidopsis thaliana as affected by changed GSH level and Cu excess. Russ J Plant Physiol 56:906–916

    Google Scholar 

  • Wollenweber-Ratzer B, Crawford RMM (1994) Enzymatic defence against post-anoxic injury in higher plants. Proc R Soc Edinb 102:381–390

    Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidant systems under photo-oxidative stress. Plant J 32:915–925

    PubMed  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Bhuiyan MNH, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    PubMed  CAS  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261–268

    CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular and Cell Proteomics 5:484– 496

    CAS  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    PubMed  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    PubMed  CAS  Google Scholar 

  • Zhang C, Ge Y (2008) Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress. Rice Sci 15:73–76

    Google Scholar 

  • Zhang Y, Lou Y, Hao J, Chen Q, Tang HR (2008) Chilling acclimation induced changes in the distribution of H2O2 and antioxidant system of strawberry leaves. Agric J 3:286–291

    Google Scholar 

  • Zhao S, Blumwald E (1998) Changes in oxidationreduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. Physiol Plant 104:134–142

    CAS  Google Scholar 

  • Zhu OYL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 11901:73–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios Molassiotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fotopoulos, V., Ziogas, V., Tanou, G., Molassiotis, A. (2010). Involvement of AsA/DHA and GSH/GSSG Ratios in Gene and Protein Expression and in the Activation of Defence Mechanisms Under Abiotic Stress Conditions. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_10

Download citation

Publish with us

Policies and ethics