Skip to main content

Heavy Metal Toxicity in Plants

  • Chapter
  • First Online:
Plant Adaptation and Phytoremediation

Abstract

Although many metal elements are essential for the growth of plants in low concentrations, their excessive amounts in soil above threshold values can result in toxicity. This detrimental effect varies with the nature of an element as well as plant species. Heavy metal toxicity in plants depends on the bioavailability of these elements in soil solution, which is a function of pH, organic matter and cation exchange capacity of the soil. Nonessential metals/metalloids such as Hg, Cd, Cr, Pb, As, and Sb are toxic both in their chemically combined or elemental forms, and plants responses to these elements vary across a broad spectrum from tolerance to toxicity. For example, the bioaccumulation of heavy metals in excessive concentrations may replace essential metals in pigments or enzymes disrupting their function and causing oxidative stress. Heavy metal toxicity hinders the growth process of the underground and aboveground plant parts and the activity of the photosynthetic apparatus, which is often correlated with progress in senescence. To avoid the toxicity, plants have developed specific mechanisms by which toxic elements are excluded, retained at root level, or transformed into physiologically tolerant forms. In this chapter, we have discussed the toxic effects of heavy metals on plant growth and their detoxification mechanisms that enable them to tolerate high levels of metals in the soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer-Verlag, New York, pp 105–123

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biochemistry, Alburry, Australia, pp 1–16

    Google Scholar 

  • Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218

    CAS  Google Scholar 

  • Alcantara E, Romera FJ, Canete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–18 98

    CAS  Google Scholar 

  • Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel and copper by Salix acmophylla Boiss.: Role of antioxidant enzymes and antioxidant substances. B Environ Contam Toxicol 70:462–469

    CAS  Google Scholar 

  • Anderson AJ, Meyer DR, Mayer FK (1972) Heavy metal toxicities: Levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust J Agric Res 24:557–71

    Google Scholar 

  • Aora AS, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100

    Google Scholar 

  • Assche F Van, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantitificatioin of tolerance and toxicity. Chem Spec Biovail 1:7–17

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulesens J. and C. Presl (Brassicaeae). New Phytol 127:61–68

    CAS  Google Scholar 

  • Barcelo J, Poschenriender C, Ruano A, Gunse B (1985) Leaf water potential in Cr(VI) treated bean plants (Phaseolus vulgaris L). Plant Physiol Suppl 77:163–4

    Google Scholar 

  • Barcelo J, Poschenrieder C, Gunse B (1986) Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot 37:178–187

    CAS  Google Scholar 

  • Barcelo J, Poschenrieder CH (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Vazquez MD, Gunse B, Vernet JP (1993) Beneficial and toxic effects of chromium in plants: Solution culture, pot and field studies. Studies in Environmental Science No. 55, Paper Presented at the 5th International Conference on Environmental Contamination. Morges, Switzerland

    Google Scholar 

  • Barcelo J, Poschenrieder C, Lombini A, Llugany M, Bech J, Dinelli E (2001) Mediterranean plant species for phytoremediation. In: Abstracts costs action 837 WG2 workshop on phytoremediation of trace elements in contaminated soils and waters (with special emphasis on Zn, Cd, Pb and As), Madrid, 5–7 April, p 23

    Google Scholar 

  • Bartisz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    Google Scholar 

  • Barton LL, Johnson GV, O’Nan AG, Wagener BM (2000) Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. J Plant Nutr 23:1833–1845

    CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251– 261

    PubMed  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Tsyganov VE, Borisov AY, Kozhemyakov AP, Stepanok VV, Martenson AM, Gianinazzi-Pearson V, Tikhonovich IA (2003) Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131(1):25–35

    CAS  Google Scholar 

  • Bera AK, Kanta-Bokaria AK, Bokaria K (1999) Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mungbean (Vigna radiata L. Wilczek). Environ Ecol 17(4):958–961

    Google Scholar 

  • Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43(3):345–353

    CAS  Google Scholar 

  • Bishnoi NR, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L) seedlings. J Plant Physiol 142:25–30

    CAS  Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47:47–57

    CAS  Google Scholar 

  • Blaylock JM, Huang JW (2000) Phytoextraction of metals; In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremed 4:87–100

    CAS  Google Scholar 

  • Booth B (2005) The added danger of counterfeit cigarettes. Environ Sci Technol 39:34A

    PubMed  CAS  Google Scholar 

  • Bowen JE (1987) Physiology of genotyping differences in zinc and copper uptake in rice and tomato. Plant Soil 99:115–125

    CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. Cambridge University Press, New York

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc- and cadmium contaminated soil. J Environ Qual 23:1151–1157

    CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    PubMed  CAS  Google Scholar 

  • Cary EE, Allaway WH, Olson OE (1977) Control of Cr concentrations in food plants. 1. Absorption and translocation of Cr by plants. J Agric Food Chem 25(2):300–304

    PubMed  CAS  Google Scholar 

  • Cavallini A, NataliL, Durante M Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243/244:119–127

    CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmàn JC, Moreno-Sànchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    PubMed  CAS  Google Scholar 

  • Chaney RL (1980) Health risks associated with toxic metals in municipal sludge. In: Britton G (ed) Sludge: health risks of land application. Ann Arbor Science Publications, Ann Arbor, Michigan, pp 58–83

    Google Scholar 

  • Chaney RL (1983a) Potential effects of waste constituents on the food chain. In: Parr J, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, New Jersey, pp 152–240

    Google Scholar 

  • Chaney RL (1983b) Plant uptake of inorganic waste constituents. In: Parr J, Marsh PB, Kla JM. (eds) Land treatment of hazardous wastes. Noyes Data Corporation, New Jersey, pp 50–76

    Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    PubMed  CAS  Google Scholar 

  • Chang AC, Page AL, Warneke JE (1987) Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. J Environ Qual 16:217–221

    CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in the presence of cadmium. Plant Physiol Biochem 37(4):297–303

    CAS  Google Scholar 

  • Clarkson DT, Luttage U (1989) Mineral nutrition. Divalent cations, transport and compartmentalization. Prog Bot 51:93–112

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    PubMed  CAS  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in plants; defense against oxidative stress. Zeitschrift fur Naturforsch 54c:730–734

    Google Scholar 

  • Crowley DE, Wang YC, Reid CP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    CAS  Google Scholar 

  • Cunningham SD (1995) In proceedings/abstracts of the fourteenth annual symposium, current topics in plant biochemistry, physiology, and molecular biology columbia, April 19–22, pp 47–48

    Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: An overview. In Vitro Cell Dev Biol 29P:207–212

    Google Scholar 

  • Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    PubMed  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    PubMed  CAS  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389– 407

    CAS  Google Scholar 

  • Deng H, Ye ZH ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80

    PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–690

    CAS  Google Scholar 

  • Dong J, Wu F, Zhang G (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci 10:974–980

    Google Scholar 

  • Dražić G, Mihailovič N, Lojić M (2006) Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol Plant 50:239–244

    Google Scholar 

  • Du ShH, Fang ShC (1982) Uptake of elemental mercury vapour by C3 and C4 species. Environ Exp Bot 22:437–443

    CAS  Google Scholar 

  • El-Nady FE Atta MM (1996) Toxicity and bioaccumulation of heavy metals to some marine biota from the Egyptian coastal waters. J Environ Sci Health A 31(7):1529–1545

    Google Scholar 

  • Fargaŝvá A (1994) Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52:452–456

    Google Scholar 

  • Fargaŝvá A (1998) Root growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effect determination. Bull Environ Contam Toxicol 61:762–769

    Google Scholar 

  • Fiskesjo G (1997) Alium test for screening chemicals; evaluation of cytological parameters. In; Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis Publ., Boca Raton, pp 307–333

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511

    CAS  Google Scholar 

  • Fuhrer J (1988) Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans Phaseolus vuglaris L. Plant Physiol 70:162–167

    Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol 77:229–236

    CAS  Google Scholar 

  • Goldbold DL, Huttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of P. abies (Karst) seedling and the significance of these metals to forest dieback. Environ Pollut 38:375–381

    Google Scholar 

  • Golovatyj SE, Bogatyreva EN, Golovatyi SE (1999) Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Res Fert 197–204

    Google Scholar 

  • Greger M (1997) Willow as phytoremediator of heavy metal contaminated soil. Proceedings of the 2nd international conference on element cycling in the environment. Warsaw, pp 167–172

    Google Scholar 

  • Greger M, Brammer E, Lindberg S, Larson G, Ildestan-Almquist J (1991) Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot 42:729–737

    CAS  Google Scholar 

  • Guliev NM, Bairamov SM, Aliev DA (1992) Functional organization of carbonic anhydrae in higher plants. Sov Plant Physiol 39:537–544

    Google Scholar 

  • Gupta S, Nayek S, Saha N, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739

    CAS  Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals molecular and physiological aspects. Acta Physiol Plant 19:459–65

    CAS  Google Scholar 

  • Hagemeyer J, Breckle SW (1996) Growth under trace element stress. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant root: the hidden half, 2nd edn. Dekker, New York, pp 415–433

    Google Scholar 

  • Hagemeyer J, Breckle SW (2002) Trace element stresses in roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant root: the hidden half, 3rd edn. Decker, New York, pp 763–785

    Google Scholar 

  • Haghiri FE (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperature. J Environ Qual 3:180–183

    CAS  Google Scholar 

  • Han FX, Maruthi SBB, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499

    CAS  Google Scholar 

  • Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563

    PubMed  CAS  Google Scholar 

  • Hanus J, Tomas J (1993) An investigation of chromium content and its uptake from soil in white mustard. Acta Fytotech 48:39–47

    Google Scholar 

  • Hegedüs A, Erdei S, Janda T, Toth E, Horvath G, Dubits D (2004) Transgenic tobacco plants over producing alfafa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress. Plant Sci 166:1329–1333

    Google Scholar 

  • Henry JR (2000) In an overview of phytoremediation of lead and mercury. NNEMS Report Washington, pp 3–9

    Google Scholar 

  • Hernández LE, Carpena-Rutz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    PubMed  CAS  Google Scholar 

  • Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Joseph GW, Merrilee RA, Raymond E (1995) Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. The symposium on environmental toxicology and risk assessment, Atlanta, pp 26–9

    Google Scholar 

  • Karunyal S, Renuga G, Paliwal K (1994) Effects of tannery effluent on seed germination, leaf area, biomass and mineral content of some plants. Bioresour Technol 47:215–218

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kinnersely AM (1993) The role of Phytochelates in plant growth and productivity. Plant Grow Regul 12:207–217

    Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    CAS  Google Scholar 

  • Krishnamurthy S, Wilkens MM (1994) Environmental chemistry of Cr. Northeastern Geol 16(1):14–17

    Google Scholar 

  • Khale H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Google Scholar 

  • Khan S, Ullah SM, Sarwar KS (2001) Interaction of chromium and copper with nutrient elements in rice (Oryza sativa cv BR-11). Bull Inst Trop Agric Kyushu Univ 23:35–9

    Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663

    CAS  Google Scholar 

  • Kocik K, Ilavsky J (1994) Effect of Sr and Cr on the quantity and quality of the biomass of field crops. Production and utilization of agricultural and forest biomass for energy: Proceedings of a seminar held at Zvolen, Slovakia, pp 168–78

    Google Scholar 

  • Kopyra M, Gwόźdź EA (2004) The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol Plant 26:459–472

    CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego, p 495

    Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus – Direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  • Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    PubMed  CAS  Google Scholar 

  • Le Faucheur S, Schildknecht F, Behra R, Sigg L (2006) Thiols in Scenedesmus vacuolatus upon exposure to metals and metalloids. Aquat Toxicol 80:355–361

    PubMed  Google Scholar 

  • Lindberg SE, Meyers TP, Taylor Jr GE, Turner RR, Schroeder WH (1992) Atmosphere-surface exchange of mercury in a forest: results of modeling and gradient approached. J Geophys Res 97:2519–2528

    CAS  Google Scholar 

  • Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49(4):567–576

    CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Chelate-assisted heavy metal removal by sunflower to improve soil with sludge. J Crop Improv 16:153–172

    CAS  Google Scholar 

  • Liu DH, Jiang WS, Gao XZ (2003/2004). Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol Plant 47(1):79–83

    Google Scholar 

  • Liu DH, Wang M, Zou JH, Jiang WS (2006) Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize (Zea mays L.). Pak J Bot 38(3):701–709

    Google Scholar 

  • Logan TJ, Chaney RL (1983) Metals. In: Page AL (ed) Utilization of municipal wastewater and sludge on land. University of California, Riverside, pp 235–326

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal, contaminated soils, natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    PubMed  CAS  Google Scholar 

  • Lunáčková L, Masarovičová E, Kráľová K, Streško V (2003) Response of fast growing woody plants from family Salicaceae to cadmium treatment. B Environ Contam Toxicol 70:576–585

    Google Scholar 

  • Maksymiec W, Baszyński T (1996) Different susceptibility of runner bean plants to excess copper as a function of growth stages of primary leaves. J Plant Physiol 149:217–221

    CAS  Google Scholar 

  • Maksymiec W, Baszyński T (1988) The effect of Cd2+ on the release of proteins from thylakoid membranes of tomato leaves. Acta Soc Bot Pol 57:465–474

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Kennelley ED (2001) Methods for removing pollutants from contaminated soil materials with a fern plant. Document type and number: United States Patent 6280500. http://www.freepatentsonline.com/6280500.html

  • Mahmood T, Islam KR, Muhammad S (2007) Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak J Bot 39(2):451–462

    Google Scholar 

  • Markert B (1993) Plants as Biomonitors-Indicators of Heavy Metals in the Terrestrial Environment. VCH Publishers, Germany, p 644

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy metal resistant and non-resistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Martin HW, Kaplan DI (1998) Temporal changes in cadmium, thallium and vanadium mobility in soil and phytoavailability under field conditions. Water Air Soil Pollut 101:399–410

    CAS  Google Scholar 

  • McGrath SP (1995) Chromium and nickel. In: Alloway BJ (ed) Heavy metal in soils, 2nd edn. Chapman and Hall, Great Britain, pp 152–178

    Google Scholar 

  • McGrath SW, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizön E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x p. velutina). Int J Phytoremed 10:47–60

    CAS  Google Scholar 

  • Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, 8/81, Punjabi Bagh

    Google Scholar 

  • Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez A, Rosa G, Castillo-Michel H, Gardea-Torresdey JL (2006) Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium (III) and chromium (VI) stress. Environ Toxicol Chem 25(1):220–226

    PubMed  CAS  Google Scholar 

  • Moral R, Pedreno JN, Gomez I, Mataix J (1995) Effects of chromium on the nutrient element content and morphology of tomato. J Plant Nutr 18:815–822

    CAS  Google Scholar 

  • Moral R, Gomez I, Pedreno JN, Mataix J (1996) Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicon esculentum M). Agrochimica 40:132–138

    CAS  Google Scholar 

  • Moreno JL, Hernandez T, Garcia C (1999) Effects of a cadmium-containing sewage sludge compost on dynamics of organic matter and microbial activity in an arid soils. Biol Fert Soils 28:230–237

    Google Scholar 

  • Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution on rice plants. Photosynth Res 36:75–80

    CAS  Google Scholar 

  • McGrath SP (1982) The uptake and translocation of tri- and hexavalent chromium and effects on the growth of oat in flowing nutrient solution and in soil. New Phytol 92:381–390

    CAS  Google Scholar 

  • Nichols PB, Couch JD, Al Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313– 319

    CAS  Google Scholar 

  • Nordberg G (2003) Cadmium and human health: a perspective based on recent studies in China. J Trace Elem Exp Med 16:307–319

    CAS  Google Scholar 

  • Nussbaum S, Schmutz D, Brunold C (1988) Regulation of assimimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol 88:1407–1410

    PubMed  CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology 13:637–646

    PubMed  CAS  Google Scholar 

  • Ozturk M, Yucel E, Gucel S, Sakcali S, Aksoy A (2008) Plants as biomonitors of trace elements pollution in soil. In: Prasad MNV (eds) Trace elements: environmental contamination, nutritional benefits and health implications, Chap. 28, Wiley, New York, pp 723–744

    Google Scholar 

  • Päivöke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: Mineral nutrients, chlorophyll content and phytase activity. Ecotoxicol Environ Safety 49:111–121

    PubMed  Google Scholar 

  • Parr PD, Taylor FG Jr. (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc Natl Acad Sci India B, 70:75–80

    CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in elation to growth of mustard (Brassica juncea cv. Pusa Jai Kisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    PubMed  CAS  Google Scholar 

  • Pedreno NJI, Gomez R, Moral G, Palacios J, Mataix J (1997) Heavy metals and plant nutrition and development. Recent Res Dev Phytochem 1:173–179

    Google Scholar 

  • Peralta JR, Torresdey JLG, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. B Environ Contam Toxicol 66:727–734

    CAS  Google Scholar 

  • Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL 2004. Effect of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    CAS  Google Scholar 

  • Piechalak A, Tomaszewaska B, Baralkiewisz D (2002) Accumulation and detoxification of lead ion in legumes. Phytochemistry 60:153–162

    PubMed  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 4:1239–1251

    Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Tot Environ 326:239–247

    CAS  Google Scholar 

  • Poschenrieder CH, Gunse B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    PubMed  CAS  Google Scholar 

  • Poschenrieder C, Vazquez MD, Bonet A, Barcelo J (1991) Chromium-III-iron interaction in iron sufficient and iron deficient bean plants. 2. Ultrastructural aspects. J Plant Nutr 14(4): 415–428

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35: 525–540

    CAS  Google Scholar 

  • Prasad MNV (1997) Trace metals. In: Prasad MNV (ed) Plant ecophysiology. Willey, New York, pp 207–249

    Google Scholar 

  • Prasad MNV (2008) Trace Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health. Wiley, New York

    Google Scholar 

  • Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees- a review. Environ Int 29:529–540

    PubMed  CAS  Google Scholar 

  • Punz WF Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–86

    CAS  Google Scholar 

  • Qureshi MI, Israr M, Abdin MZ Iqbal M (2005) Responses of Artemisia annua L. to lead and salt induced oxidative stress. Environ Exp Bot 53:185–193

    CAS  Google Scholar 

  • Rai UN, Chandra P (1992) Accumulation of copper, lead, manganese and iron by field populations of Hydrodictyon reticulatum (L.) Lagerheim. Sci Total Environ 116:203–211

    PubMed  CAS  Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Cr(III) hydrolysis constants and solubility of Cr(III) hydroxide. Inorg Chem 26:345–349

    CAS  Google Scholar 

  • Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23

    PubMed  CAS  Google Scholar 

  • Rai UN, Tripathi RD, Sinha S, Chandra P (1995) Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata (L. f.) Royle and Chara corallina Wildenow. J Environ Sci Health A 30(3):537–551

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    PubMed  CAS  Google Scholar 

  • Ramos I, Esteban E, Lucena JJ Garate A (2002) Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Sci 162:761–767

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Phytoremediation of toxic metals. In: Raskin I, Ensley BD (eds) Using plants to clean up the environment. Wiley, New York, p 193

    Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+- calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20: 600–608

    CAS  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, Rı´os deMolina MC (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Poll 141:353–358

    CAS  Google Scholar 

  • Root RA, Miller RJ, Koeppe DE (1975) Uptake of cadmium -its toxicity and effect on the iron-to- zinc ratio in hydroponically grown corn. J Environ Qual 4:473–476

    CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (1997) Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J Plant Nutr 20:473–483

    CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (1999) Chromium, nickel and zinc tolerance in Leucaena leucocephala (K8). Silvae Genet 48:151–157

    Google Scholar 

  • Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859

    PubMed  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Differential lead tolerance of rice and black gram genotypes in hydroponic culture. Rost. Výroba (Praha) 47:541–548

    CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P (2001) Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L) in vitro. J Plant Physiol 158:1281–1290

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688–692

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russian J Plant Physiol 4:523–544

    Google Scholar 

  • Shafiq M, Iqbal MZ (2005) Tolerance of Peltophorum pterocarpum D. C. Baker Ex K. Heyne seedlings to lead and cadmium treatment. J New Seeds 7:83–94

    Google Scholar 

  • Shah FR, Ahmad N, Masood KR, Zahid DM (2008) The influence of Cd and Cr on the biomass production of Shisham (Dalbergia sissoo Roxb.) seedlings. Pak J Bot 40(4):1341–1348

    CAS  Google Scholar 

  • Shanker AK (2003) Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Shanker AK, Pathmanabhan G (2004) Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L) Moench cv CO 27) under Cr(III) and Cr(VI) stress. Plant Soil 265:141–151

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–751

    PubMed  CAS  Google Scholar 

  • Sharma DC, Pant RC (1994) Chromium uptake and its effects on certain plant nutrients in maize (Zea mays L. cv. Ganga 5). J Environ Sci Health A 29:941–948

    Google Scholar 

  • Sharma DC, Sharma CP (1993) Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun 21:317–321

    CAS  Google Scholar 

  • Sharma DC, Sharma CP (1996) Chromium uptake and toxicity effects on growth and metabolic activities in wheat, Triticum aestivum L. cv. UP 2003. Indian J Exp Biol 34:689–691

    PubMed  CAS  Google Scholar 

  • Sharma DC, Chaterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. DH220) metabolism. Plant Sci 111:145–151

    CAS  Google Scholar 

  • Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    PubMed  CAS  Google Scholar 

  • Shen ZG, Liu YL (1998) Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiol Commun 34:133–139

    Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23:345–351

    CAS  Google Scholar 

  • Shewry PR, Peterson PJ (1974) The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). J Exp Bot 25:785–797

    CAS  Google Scholar 

  • Shukla OP, Rai UN, Pal A (2005) Accumulation of chromium and its phytotoxic effects on Bacopa monnieri L. J Ecophysiol Occup Health 5:165–169

    Google Scholar 

  • Shukla OP, Dubey S, Rai UN (2007) Preferential accumulation of cadmium and chromium: Toxicity in Bacopa monnieri L. under mixed metal treatments. B Environ Contam Toxicol 78:252–257

    CAS  Google Scholar 

  • Siedlecka A, Baszynski T (1993) Inhibition of electron transport flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202

    CAS  Google Scholar 

  • Singh AK (2001) Effect of trivalent and hexavalent chromium on spinach (Spinacea oleracea L). Environ Ecol 19:807–810

    CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    PubMed  CAS  Google Scholar 

  • Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–214

    CAS  Google Scholar 

  • Skόrzyńska-Polit E, Baszynski T (1995) Photochemical activity of primary leaves in cadmium stressed Phaseolus coccineus depends on their growth stages. Acta Soc Bot Pol 64:273–279

    Google Scholar 

  • Skόrzyńska-Polit E, Baszynski T (1997) Difference in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Sci 128:11–21

    Google Scholar 

  • Skόrzyńska-Polit E, Tukendorf A, Selstam E, Baszyński T (1998) Calcium modifies Cd effect on runner bean plants. Environ Exp Bot 40:275–286

    Google Scholar 

  • Stephens WE, Calder A (2005) Source and health implications of high toxic metal concentrations in illicit tobacco products. Environ Sci Technol 39:479–488

    PubMed  CAS  Google Scholar 

  • Šimonova E, Imonová M, Henselová M, Masarovičová E, Kohanová J (2007) Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biol Plant 51(3):488–492

    Google Scholar 

  • Singh S, Sinha S (2004) Scanning electron microscopic studies and growth response of the plants of Helianthus annuus L. grown on tannery sludge amended soil. Environ Int 30:389–395

    PubMed  Google Scholar 

  • Stiborova M, Doubravova M, Leblova S (1986) A comparative study of the effect of heavy metal ions on ribulose 1,5-bisphosphate carboxylase and phosphoenol pyruvate caroboxylase. Biochem Physiol Pflanz 181:373–379

    CAS  Google Scholar 

  • Sujatha P, Gupta A (1996) Tannery effluent characteristics and its effects on agriculture. J Ecotoxicol Environ Monit 6:45–48

    Google Scholar 

  • Talanova VV, Titov AF, Boeva NP (2001) Effect of increasing concentrations of heavy metals on the growth of barley and wheat seedlings. Russian J Plant Physiol 48:100–103

    CAS  Google Scholar 

  • Tester M, Leigh RA (2001) Partitioning of nutrient transport processes in roots. J Exp Bot 52: 445–457

    PubMed  CAS  Google Scholar 

  • Tokalioglu S, Kartal S (2006) Statistical evaluation of the bioavailability of heavy metals from contaminated soil to vegetables. B Environ Contam Toxicol 76:311–319

    CAS  Google Scholar 

  • Tripathi AK, Sadhna T, Tripathi S (1999) Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. J Environ Biol 20:93–98

    CAS  Google Scholar 

  • Tu C, Ma LQ (2005) Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperacumulator Pteris vittata L. Environ Pollut 135:333–340

    PubMed  CAS  Google Scholar 

  • Turner AP, Dickinson NM (1993) Survival of Acer pseudoplatanus L. (sycamore) seedlings on metalliferous soils, New Phytol 123:509

    CAS  Google Scholar 

  • Turner MA, Rust RH (1971) Effects of Cr on growth and mineral nutrition of soybeans. Soil Sci Soc Am Proc 35:755–758

    CAS  Google Scholar 

  • Turner JG, Ch E, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14 (Suppl):153–164

    Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169

    CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    PubMed  CAS  Google Scholar 

  • Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S (2001) Chromium induced physiological changes in Vallisneria spiralis L and its role in phytoremediation of tannery effluent. B Environ Contam Toxicol 67(2):246–256

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of Stress on Photosynthesis. The Hague: Nijhoff/Junk. pp 371–382

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Vassilev A, Yordanov I, Tsonev T (1997) Effects of Cd2+ on the physiological state and photosynthetic activity of young barley plants. Photosynthetica 34:293–302

    CAS  Google Scholar 

  • Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156

    CAS  Google Scholar 

  • Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438

    Google Scholar 

  • Verloo M, Eeckhout M (1990) Metal species transformations in soil: an analytical approach. Int J Environ Anal Chem 39:170–186

    Google Scholar 

  • Verma P, Georges KV, Singh HV, Singh RN (2007) Modeling cadmium accumulation in radish, carrot, spinach and cabbage. Appl Math Model 31:1652–1661

    Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    PubMed  CAS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Jean L, Bordas F, Faure O, Ledoigt G, Hitmi A (2008) Effect of chromium species on phytochemical and physiological parameters in Datura innoxia Chemosphere 72:763–771

    PubMed  CAS  Google Scholar 

  • Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471–473

    CAS  Google Scholar 

  • Watmough SA (1994) Adaptation to pollution stress in trees: metal tolerance traits, Ph.D. thesis, Liverpool John Moore University, Liverpool

    Google Scholar 

  • Wei CY, Chen TB, Huang ZC (2002) Cretan bake (Pteris cretica L): an arsenic accumulating plant. Acta Ecol Sin 22:777–782

    Google Scholar 

  • Williams DE, Vlamis J, Purkite AH, Corey JE (1980) Trace element accumulation movement and distribution in the soil profile from massive applications of sewage sludge. Soil Sci 1292: 119–132

    Google Scholar 

  • Wong MH, Bradshaw AD (1982) A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol 91:255–261

    CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (1999) Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol Plant 21:99–107

    Google Scholar 

  • Wolfgang S (1996) Influence of chromium (III) on root-associated Fe(III) reductase in Plantago lanceolata L. J Exp Bot 47:805–810

    Google Scholar 

  • Wu FB, Zhang GP (2002) Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J Plant Nutr 25:1163–1173

    CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14(Suppl):165–183

    Google Scholar 

  • Yildiz N (2005) Response of tomato and corn plants to increasing cd levels in nutrient culture. Pak J Bot 37(3):593–599

    Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    CAS  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    CAS  Google Scholar 

  • Zhang GP, Fukami M, Sekimoto H (2002) Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop Res 4079:1–7

    Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Poll 127:373–388

    CAS  Google Scholar 

Download references

Acknowledgment

The study was financially supported by the Higher Education Commission of Pakistan. We are thankful to Dr. Rukhsana Bajwa for extending library facilities of the Institute of Mycology and Plant Pathology, University of the Punjab, Lahore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fazal Ur Rehman Shah , Nasir Ahmad , Khan Rass Masood , Jose R. Peralta-Videa or Firoz ud Din Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shah, F.U.R., Ahmad, N., Masood, K.R., Peralta-Videa, J.R., Ahmad, F.u.D. (2010). Heavy Metal Toxicity in Plants. In: Ashraf, M., Ozturk, M., Ahmad, M. (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9370-7_4

Download citation

Publish with us

Policies and ethics