Skip to main content

Evolution of Plant–Animal Interactions

  • Chapter
  • First Online:
All Flesh Is Grass

Abstract

The evolution of plant–animal interactions goes back to the Early Archean, when the first signals of photosynthesis may have been detected in the Isua Peninsula in Greenland, a phenomenon that is related to the isotopic anomalies of carbon. The first evidence of reliable fossils of photosynthetic microorganisms has been identified by micropaleontologists in the Late Archean and Early Proterozoic. A closely related topic in this geologic time interval is the evolution of trophic relations and metabolic diversification in the microbial world. In the context of the three domains of life, Archea, Bacteria, and Eucarya, the bifurcation of multicellular organisms into plants and animals becomes evident only during the Paleozoic. Cell evolution also leads up to the unicellular dichotomy of autotrophs and heterotrophs. Symbiosis has a strong role to play in the transition to plants and animals in the Phanerozoic. It is timely to focus on the details of evolution in the Cretaceous and Tertiary, where detailed pathways of evolution have been gathered in many geographical regions, including the Karst region of northern Italy. Various experimental techniques have contributed to elucidate the coevolution of plants and animals. A special case of plant–animal interaction is the evolution and dispersal of hominins, including their impact on the ecosystems. A significant development in understanding the evolution of plant–animal interactions is based on the possibility of identifying reliable biomarkers that can characterize its different stages, from the earliest microbes to the extant plants and animals. Such identification of biomarkers labeling different stages of evolution may orient the search for life in the exploration of the Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian, V. (1987) Coevolution in lichens. Ann. N. Y. Acad. Sci. 503: 307–315.

    Article  Google Scholar 

  • Ahmadjian, V. (1993) The Lichen Symbiosis . Wiley, New York, p. 5.

    Google Scholar 

  • Alemseged, Z., Spoor, F., Kimbel, W.H., Bobe, R., Geraads, D., Reed, D. and Wynn, J.G. (2006) A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443: 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Allen, M.F. (1991) The Ecology of Mycorrhizae. Cambridge University Press, New York.

    Google Scholar 

  • Ambrose, S.H. (2006) A tool for all seasons. Science 314: 930–932.

    Article  PubMed  CAS  Google Scholar 

  • Barnosky, A., Koch, P.L., Feranec, R.S., Wing, S.L. and Shabel, A.B. (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306: 70–75.

    Article  PubMed  CAS  Google Scholar 

  • Blanc, M., et al. and LAPLACE Team Members (2009) LAPLACE: a mission to Europa and the Jupiter System for ESA’ Cosmic Vision Programme, Experimental Astronomy, 23, pp. 849–892. http://www.ictp.it/~chelaf/LAPLACE.pdf,http://www.ictp.it/~chelaf/LAPLACE_Members.pdf.

  • Caffau, M., Tsakiridou, E., and Pugliese N. (2000) Le prime aggregazioni di Requieniidae dell’Aptiano-Albiano del Carso Triestino, In: Crisi biologiche, radiazioni adattative e dinamica delle piattaforme carbonatiche, Accad. Naz. Sci. Lett. Arti di Modena, Collana di Studi 21: 57–62

    Google Scholar 

  • Caffau, M., Tsakiridou, E., Colizza, E. and Pugliese, N. (2004) Rudist and foraminiferal biofacies during Santonian-Campanian: life-strategy in ramp settings (Aurisina section, Trieste Karst, Italy). Cour. Forsh. -Inst. Senckenberg. 247: 159–173

    Google Scholar 

  • Chela-Flores, J. (1998). A search for extraterrestrial eukaryotes: physical and biochemical aspects of exobiology, Orig. Life Evol. Biosph. 28: 583–596. http://www.ictp.it/~chelaf/searching_for_extraterr.html.

  • Chela-Flores, J. (2009) A Second Genesis: Stepping-stones Towards the Intelligibility of Nature. World Scientific Publishers, Singapore, 248 pp.

    Google Scholar 

  • Chela-Flores, J., Jerse, G., Messerotti, M. and Tuniz, C. (2008) Astronomical and astrobiological imprints on the fossil records. A review, In: J. Seckbach (ed.) From Fossils to Astrobiology, Cellular Origins, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht, The Netherlands, pp. 389–408. http://www.ictp.it/~chelaf/FOASfinal.pdf.

  • Clarke, R.J. (1999) Discovery of complete arm and hand of the 3.3 million-year-old Australopithecus skeleton from Sterkfontein, South Africa. S. Afr. J. Sci. 95: 477–480.

    Google Scholar 

  • Conway Morris, S. (1989) Early Metazoans, Vol. 73. Science Progress, Oxford, pp. 81–89.

    Google Scholar 

  • Cucchi, F., Pirini Radrizzani, C. and Pugliese, N. (1987) The carbonate stratigraphic sequence of the Karst of Trieste (Italy). Mem. Soc. Geol. It. 40: 35–44.

    Google Scholar 

  • Darlington, C.D. (1951) Mendel and the determinants, In: L.C. Dunn (ed.) Genetics in the Twentieth Century. Macmillan, New York, pp. 315–332.

    Google Scholar 

  • Dennell, R. and Roerbroeks, W. (2005) An Asian perspective on early human dispersal from Africa. Nature 438: 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, J.R. and Stanton, R.J. (1990) Paleoecology, Concepts and Applications, 2nd Edn. Wiley, New York, 502 pp.

    Google Scholar 

  • Drobne, K., Pugliese, N. and Trutin, M. (2000) Correlation of Paleocene Biota of the North Adriatic Karst Area and Hercegovina. 2nd Croatian Geol. Cong., Zbornik radova Proc. Zagreb, Croatia, pp. 167–170.

    Google Scholar 

  • EPICA (2004) Eight glacial cycles from an Antarctic ice core. Nature 429: 623–628.

    Article  Google Scholar 

  • Frank, A.B. (1885) Uber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäumedurch unterirdische Pilze. Ber. Dtsch. Bot. Ges. 3: 128–145.

    Google Scholar 

  • Gerola, F.M. (1988) Biologia Vegetale, sistematica filogenetica. UTET (ed.), Turin, Italy.

    Google Scholar 

  • Gray, M. (1992) The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141: 233–257.

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth, D.L., Kirk, P.M., Sutton, B.C. and Pegler, D.N. (1995) Dictionary of the Fungi, 8th edn. International Mycological Institute. Cambridge University Press, Cambridge.

    Google Scholar 

  • Henderson, I.R., Owen, P. and Nataro, J.P. (1999) Molecular switches – the ON and OFF of bacterial phase variation. Mol. Microbiol. 33: 919–932.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, H.J. (1994) Proterozoic carbonaceous compressions (metaphytes and worms), In: Bengtson, S. (ed) Early Life on Earth. Nobel Symposium No. 84, Columbia, U.P., New York, pp. 342–357.

    Google Scholar 

  • Hohenegger, J. (1999) Larger Foraminifera – Microscopical Greenhouses Indicating Shallow-Water tropical and Subtropical Environments in the Present and Past. Occasional Papers 32, Kagoshima Univ. Research Center for Pacific Islands, pp. 19–45.

    Google Scholar 

  • Hooper, L.V., Wong, M.H., Thelin, A., Hansson, L., Falk, P.G. and Gordon, J.I. (2001) Molecular analysis of commensal hostmicrobial relationships in the intestine. Science (Washington DC) 291: 881–884.

    Google Scholar 

  • Horita, J. (2005) Some perspectives on isotope biosignatures for early life. Chem. Geol. 218: 171–186.

    Article  CAS  Google Scholar 

  • Hottinger, L. (1998) Shallow benthic foraminifera at the Paleocene–Eocene boundary. Strata ser. 1(9): 61–64.

    Google Scholar 

  • Hottinger, L. and Drobne, K. (1988) Alveolines tertiaires: quleques problèmes lies à la conception de l’espèce. Rev. de Paléobiol., Vol Spéc., Benthos 86: 665–681.

    Google Scholar 

  • Hughes T.P., Baird A.H., Bellwood D.R., Card M., Connolly S.R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J.B.C., Kleypas, J., Lough, J.M., Marshall, P., Nyström, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B. and Roughgarden, J. (2003) Climate change, human impacts, and the resilience of coral reefs. Science (Washington, D.C.), 301: 929–933.

    Google Scholar 

  • Kamienski, F. (1881) Die Vegetationsorgane der Monotropa hypopitys L. Bot. Zeitung, 39: 457–461.

    Google Scholar 

  • Knoll, A.H. (1984) Earth’s earliest biosphere: its origin and evolution, a review. Paleobiology 10: 286–292.

    Google Scholar 

  • Knoll, A.H. and Swett, K. (1987) Micropalaeontology across the Precambrian–Cambrian in Spitzbergen. J. Palaeontol. 61: 898–926.

    Google Scholar 

  • Knoll, A.H. and Walter, M.R. (1992) Latest Proterozoic stratigraphy and Earth history. Nature 356: 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Langer, M. (1986) Recent epiphytic foraminifera from Vucano (Mediterranean Sea). Rev. de Paléobiol., Spéc., Benthos 86: 827–832.

    Google Scholar 

  • Langer, M. (1993) Epiphytic foraminifera. Mar. Micropaleontol. 20: 235–265.

    Article  Google Scholar 

  • Law, R. and Lewis D.H. (1983) Biotic Environment and the maintenance of sex – some evidence from mutualistic symbioses. Biol. J. Linn. Soc. 20: 249–276.

    Article  Google Scholar 

  • Malloch, D.W., Pirozynski, K.A. and Raven, P.H. (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc. Natl. Acad. Sci. USA 77: 2113–2118.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. (1992) Symbiosis and Cell Evolution. W.H. Freeman, San Francisco.

    Google Scholar 

  • Margulis, L. and Cohen, J.E. (1994) Combinatorial generation of taxonomic diversity: Implication of symbiogenesis for the Proterozoic fossil record, In: S. Bengtson (ed.) Early Life on Earth, Nobel Symposium No 84 Columbia U.P., New York, pp. 327–333.

    Google Scholar 

  • McFall-Ngai, M.J. (1998) The development of cooperative associations between animals and bacteria: establishing détente among domains. Am. Zool. 38: 593–608.

    CAS  Google Scholar 

  • McFall-Ngai, M.J. (2001) Identifying ‘prime suspects’: symbioses and the evolution of multicellularity. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 129(4): 711–723.

    Article  PubMed  CAS  Google Scholar 

  • Mikell, A.T., Parker B.C. and Simmons, G.M. Jr. (1984) Response of an Antarctic lake heterotrophic community to high dissolved oxygen. Appl. Environ. Microbiol. 47: 1062–1066.

    PubMed  CAS  Google Scholar 

  • Miller G.H., Magee, J.W., Johnson, B.J., Fogel, M.L., Spooner, N.A., McCulloch, M.T. and Ayliffe, L.K. (1999) Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283: 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G.H., Fogel, M.L., Magee, J.W., Gagan, M.K., Clarke, S.J. and Johnson, B.J. (2005) Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Moorbath, S. (2005) Oldest rocks, earliest life, heaviest impacts, and the Hadean–Archaean transition. Appl. Geochem. 20: 819–824.

    Article  CAS  Google Scholar 

  • Moran, N.A. (2006) Symbiosis. Curr. Biol. 16: 866–871.

    Article  Google Scholar 

  • Narbonne, G.M. and Hofmann, H.J. (1987) Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30: 647–676.

    Google Scholar 

  • Page, R.D.M. and Hafner, M.S. (1996) Molecular phylogenies and host–parasite cospeciation: gophers and lice as a model system, In: P.H. Harvey, A.J. Leigh Brown, J. Maynard Smith and S. Nee (eds.) New Uses for New Phylogenies. Oxford University Press, New York, pp. 255–272.

    Google Scholar 

  • Pearse, V.B. and Muscatine, L. (1971) Role of symbiontic algae (Zooxanthellae) in coral calcification. Biol. Bull. Woods Hole 141: 287–301.

    Article  Google Scholar 

  • Pennisi, E. (2008) Evolution modernizing the modern synthesis? Science 321: 196–197.

    Article  PubMed  CAS  Google Scholar 

  • Pirozynski, K. (1991) Galls, flowers, fruits, and fungi, In: L. Margulis and R. Fester (eds.) Symbiosis as a Source of Evolutionary Innovation Mutualistic Symbiosis in the Origin and Evolution of Land Plants. MIT Press, Cambridge, pp. 364–379.

    Google Scholar 

  • Pugliese, N., Arbulla, D., Caffau, M. and Drobne, K. (2000) Strategia di vita nel biota daniano (SBZ 1) del Carso Triestino (Italia). In: Crisi biologiche, radiazioni, adattative e dinamica delle piattaforme carbonatiche. Acc. Naz. delle Scienze, Lettere ed Arti. Modena. Collana Studi 20: 215–220.

    Google Scholar 

  • Pugliese, N. and Tunis, G. (2006) Karst area within the Adriatic Carbonate Platform. Guida alle escursioni, EUT. In: R. Melis, R. Romano and G. Fonda (eds.) Giornate della Società Paleontologica Italiana (Trieste, 8–11 giugno), pp. 16–18.

    Google Scholar 

  • Pugliese, N., Drobne, K., Barattolo, F., Caffau, M., Galvani, R., Kedves, M., Montenegro, M.E., Pirini Radrizzani, C., Plenicar, M. and Turnšek, D. (1995) Micro and macrofossils from the K/T boundary through Paleocene in the Northern Adriatic Platform. First Croatian Geological Congress (Opatija), Proc. 2: 503–513.

    Google Scholar 

  • Quispel, A. (1998) Evolutionary aspects of symbiotic adaptations rhizobium’s contribution to evolution by association, In: H.P. Spaink and A. Kondorosi (eds.) The Rhizobiaceae, Molecular Biology of a Model Plant-associated Bacteria. Kluwer, Dordrecht, pp. 487–507.

    Google Scholar 

  • Redecker, D., Kodner, R. and Graham, L. (2000) Glomalean fungi from the Ordovician. Science 289: 1920–1921.

    Article  PubMed  CAS  Google Scholar 

  • Rollinson, H. (2007) Early Earth Systems. A Geochemical Approach. Blackwell, Oxford, pp. 224–225.

    Google Scholar 

  • Sapp, J. (1994) Evolution by Association. A History of Symbiosis. Oxford University Press, New York.

    Google Scholar 

  • Sapp, J. (ed.) (2005) Microbial Phylogeny and Evolution: Concepts and Controversies. Oxford University Press, New York.

    Google Scholar 

  • Schidlowski, M., Hayes, J.M. and Kaplan, I.R. (1983) Isotope inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen, In: J.W. Schopf (ed.) Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, NJ, pp. 149–186.

    Google Scholar 

  • Schimper, A.F.W. (1883) Ûber die Entwicklung der Schlorophyllkörner und Farbkörper. Bot. Zeitung 4: 105–114.

    Google Scholar 

  • Schopf, J.W. (1993) Microfossils of the Early Archaean Apex Chert: new evidence of the antiquity of life. Science 260: 640–646.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W. (1994) The oldest known records of life: early Archaean stromatolites, microfossils, and organic matter, In: S. Bengtson (ed.) Early Life on Earth. Columbia University Press, New York, pp. 270–286.

    Google Scholar 

  • Schopf, J.W., Kudrayavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002) Laser Raman imagery of Earth’s earliest fossils. Nature 416: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W., Tewari, V.C. and Kudrayvtsev, A.B. (2008) Discovery of a new chert – permineralised microbiota in the Proterozoic Buxa formation of the Ranjit window, Sikkim, N.E. Lesser Himalaya, India and its astrobiological implications. Astrobiol. J. 8(4): 735–746.

    Google Scholar 

  • Shen, Y. and Buick, R. (2004) The antiquity of microbial sulfate reduction. Earth Sci. Rev. 64: 243–272.

    Article  CAS  Google Scholar 

  • Shukla, M., Tewari, V.C., Babu, R. and Sharma, A. (2006) Microfossils from the Neoproterozoic Buxa Dolomite, West Siang district, Arunachal Lesser Himalaya, India and their significance. J. Palaeont. Soc. India 51(1): 57–73.

    Google Scholar 

  • Sponheimer, M., Passey, B.H., de Ruiter, D.J., Guatelli-Steinberg, D., Cerling, T.E. and Lee-Thorp, J.A. (2006) Isotopic evidence for dietary variability in the early Hominin Paranthropus robustus. Science 314: 980–982.

    Article  PubMed  CAS  Google Scholar 

  • Stedman, H.H., Kozyak, B.W., Nelson, A., Thesier, D.M., Su, L.T., Low, D.W., Bridges, C.R., Shrager, J.B., Minugh-Purvis, N., Marilyn A. and Mitchell, M.A. (2004) Myosin gene mutation correlates with anatomical changes in the human lineage, Nature 428: 415–418.

    Google Scholar 

  • Strauss, H. and Beukes, N. (1996) Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa. Precambrian Res. 79: 57–71.

    Article  CAS  Google Scholar 

  • Tewari, V.C. (1988) Discovery of Vendotaenids from India, In: Indo–Soviet Symposium on Stromatolites and Stromatolitic Deposits. Wadia Institute of Himalayan Geology, Dehradun, pp. 25–28.

    Google Scholar 

  • Tewari, V.C. (1989) Upper Proterozoic–Lower Cambrian Stromatolites and Indian Stratigraphy. Him. Geol. 13: 143–180.

    Google Scholar 

  • Tewari, V.C. (1993) Ediacaran Metaphytes from the Lower Krol Formation, Lesser Himalaya, India. Geosci. J. 14(1,2): 143–148.

    Google Scholar 

  • Tewari, V.C. (1998) Earliest microbes on Earth and possible occurrence of stromatolites on Mars, In: J. Chela Flores and F. Raulin (eds.) Exobiology: Matter, Energy and Information in the Origin and Evolution of Life in the Universe. Kluwer, The Netherlands, pp. 261–265.

    Google Scholar 

  • Tewari, V.C. (1999) Vendotaenids: earliest megascopic multicellular algae on Earth.Geosci. J. 20(1): 77–85.

    Google Scholar 

  • Tewari, V.C. (2001a) Origins of life in the universe and earliest prokaryotic microorganisms on Earth, In: J. Chela Flores, et al. (eds.) First Steps in the Origin of Life in the Universe. Kluwer, The Netherlands, pp. 251–254.

    Google Scholar 

  • Tewari, V.C. (2001b) Neoproterozoic glaciation in the Uttaranchal Lesser Himalaya and the global palaeoclimate change. Geol. Surv. India, Spl. Publ. 65(3): 49–56.

    Google Scholar 

  • Tewari, V.C. (2004) Microbial diversity in Meso-Neoproterozoic formations, with particular reference to the Himalaya, In: J. Seckbach (ed.) Origins. Kluwer, The Netherlands, pp. 515–528.

    Google Scholar 

  • Tewari, V.C. (2007) The rise and decline of the Ediacaran biota: palaeobiological and stable isotopic evidence from the NW and NE Lesser Himalaya, India, In: P. Vickers, P. Rich and P. Komarower (eds.) Rise and Fall of the Ediacaran Biota, Vol. 286. Geological Society of London, Special Publication, pp. 77–101.

    Google Scholar 

  • Tewari, V.C. (2009) Proterozoic unicellular and multicellular fossils from India and their implications, In: J. Seckbach and M. Walsh (eds.) From Fossils to Astrobiology, Records of Life on Earth and the Search for Extraterrestrial Biosignatures. Springer, The Netherlands, pp. 119–139.

    Google Scholar 

  • Tewari, V.C. and Sial, A.N. (2007) Neoproterozoic – Early Cambrian isotopic variation and chemostratigeaphy of the Lesser Himalaya, India, Eastern Gondwana. Chem. Geol. 237: 64–88.

    Article  CAS  Google Scholar 

  • Tewari V.C., Stenni B., Pugliese N., Drobne K., Riccamboni R. and Dolenec T. (2007) Peritidal sedimentary depositional facies and carbon isote variation across K/T boundary carbonates from NW Adriatic platform. Palaeogeogr. Palaeoclimatol. 255: 77–86.

    Article  Google Scholar 

  • Tewari, V.C., Schopf, J.W. and Kudravtsev, A.B. (2008) Neoproterozoic microfossils from the Buxa Dolomite, NE Lesser Himalaya, India: analysis by Raman Spectroscopy and optical and confocal laser scanning microscopy, In: World Summit on Ancient Microscopic Fossils, 27 July–02 August, IGPP Centre for the Study of Evolution and the Origin of Life (CSEOL), University of California, Los Angeles, USA (abstract), p. 36.

    Google Scholar 

  • Thompson, J.N. (1987) Symbiont-induced speciation. Biol. J. Linnean Soc. 32(4): 385–393.

    Article  Google Scholar 

  • Thompson, J.N. (1994) The Coevolutionary Process. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Trappe, J.M. and Berch S.M. (1985) The prehistory of mycorrhizae: AB Frank’s predecessors. In: R. Molina Proceedings of the 6th North American Conference on Mycorrhizae. Corvallis, OR, USA: USDA Forest Service Pacific Northwest Forest and Range Experiment Station, Forestry Sciences Laboratory, pp. 2–11.

    Google Scholar 

  • Travé, A., Serra-Kiel, J. and Zamarreño, J. (1996) Paleoecological interpretation of transitional environments in Eocene Carbonates (NE Spain). Palaios 11: 141–160.

    Article  Google Scholar 

  • Tschermak-Woess, E. (1988) The algal partner, In: M. Galun (ed.) CRC Handbook of Lichenology, Vol. 1. CRC Press, Boca Raton, FL, pp. 39–92.

    Google Scholar 

  • Turnsek, D. and Drobne, K. (1998) Paleocene corals from the northern Adriatic platform. In: L. Hottinger and K. Drobne (eds.) Paleogene Shallow Benthos of the Tethys. Opera SAZU, 4 razr 34/2, ZRC SAZU, Ljubljana, pp. 129–154.

    Google Scholar 

  • Van der Heijden, M.G.A. and Sanders, I.R. (eds.) (2002) Mycorrhizal Ecology. Springer, Berlin.

    Google Scholar 

  • Vincent, W.F. (2007) Cold tolerance in cyanobacteria, In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, pp. 289–301.

    Google Scholar 

  • Wells, S. (2006) Deep ancestry. Inside the Genographic Project. National Geographic, Washington, p. 247.

    Google Scholar 

  • Went, F.W. and Stark, N. (1968) The biological and mechanical role of soil fungi. Proc. Natl. Acad. Sci. USA 60: 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Westall, F. (1999) The nature of fossil bacteria. J. Geophys. Res. 104: 437–451.

    Article  Google Scholar 

  • Westall, F., De Wit, M.J., Dann, J. Van Der Gaast, S., De Ronde., C., Gerneke, D. (2001) Early Archaean fossil bacteria and biofilms in hydrothermally-influenced shallow water sediments, Barberton green stone, South Africa. Precamb. Res. 106: 93–116.

    Article  CAS  Google Scholar 

  • Wharton Jr., R.A., Parker, B.C. and Simmons Jr., G.M. (1983) Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22: 355–365.

    Article  Google Scholar 

  • Wheelis, M.L., Kandler, O. and Woese, C.R. (1992) On the nature of global classification. Proc. Natl. Acad. Sci. USA 89: 2930–2934.

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse, M.J., Kamber, B.S. and Moorbath, S. (1999) Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland-a reassessment based on combined ion-­microprobe and imaging studies. Chem. Geol. 160: 201–224.

    Article  CAS  Google Scholar 

  • Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578–6583.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C., Kandler, O. and Wheelis, M. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87(12): 4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z. (1984) Microfossil flora from the Late Sinian, Doushantuo Formation, Hubei Province, China. Geological Proceedings Paper Coll. Geol. Publ. House, Beijing, pp. 129––137 (in Chinese).

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Romana Melis (University of Trieste) and Professor Antonio Russo (University of Modena and Reggio Emilia) for their useful suggestions concerning plant/animal interactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Chela-Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chela-Flores, J., Montenegro, M.E., Pugliese, N., Tewari, V.C., Tuniz, C. (2010). Evolution of Plant–Animal Interactions. In: Dubinsky, Z., Seckbach, J. (eds) All Flesh Is Grass. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9316-5_1

Download citation

Publish with us

Policies and ethics