Skip to main content

Actin in Clathrin-Mediated Endocytosis

  • Chapter
  • First Online:
Actin-based Motility
  • 1068 Accesses

Abstract

In eukaryotic cells the actin cytoskeleton provides mechanical force for many processes in which the plasma membrane is reshaped. These processes include cell migration, cell division and the formation of endocytic vesicles. Here I will focus on the role of the actin cytoskeleton in clathrin-mediated endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AE, Pringle JR (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98:934–45

    Article  PubMed  CAS  Google Scholar 

  • Aghamohammadzadeh S, Ayscough KR (2009) Differential requirements for actin during yeast and mammalian endocytosis. Nat Cell Biol 11:1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Ammer AG, Weed SA (2008) Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 65:687–707

    Article  PubMed  CAS  Google Scholar 

  • Benesch S, Polo S, Lai FPL, et al. (2005) N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J Cell Sci 118:3103–15

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Orth JD, Chen J, et al. (2003) Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol Cell Biol 23:2162–70

    Article  PubMed  CAS  Google Scholar 

  • Carroll SY, Stirling PC, Stimpson HEM, et al. (2009) A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell 17:552–60

    Article  PubMed  CAS  Google Scholar 

  • Colwill K, Field D, Moore L, et al. (1999) In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions. Genetics 152:881–93

    PubMed  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  PubMed  CAS  Google Scholar 

  • Cope MJ, Yang S, Shang C, et al. (1999) Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. J Cell Biol 144:1203–18

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino JL, Goode BL (2005) Dissection of Arp2/3 complex actin nucleation mechanism and distinct roles for its nucleation-promoting factors in Saccharomyces cerevisiae. Genetics 171:35–47

    Article  PubMed  Google Scholar 

  • Dharmalingam E, Haeckel A, Pinyol R, et al. (2009) F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J Neurosci 29:13315–27

    Article  PubMed  CAS  Google Scholar 

  • Engqvist-Goldstein AE, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332

    Article  PubMed  CAS  Google Scholar 

  • Engqvist-Goldstein AEY, Zhang CX, Carreno S, et al. (2004) RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Molecular Biology of the Cell 15:1666–79

    Article  PubMed  CAS  Google Scholar 

  • Ferguson S, Raimondi A, Paradise S, et al. (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17:811–22

    Article  PubMed  CAS  Google Scholar 

  • Frost A, Perera R, Roux A, et al. (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132:807–17

    Article  PubMed  CAS  Google Scholar 

  • Frost A, Unger VM, De Camilli PV (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–96

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto LM, Roth R, Heuser JE, et al. (2000) Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1:161–71

    Article  PubMed  CAS  Google Scholar 

  • Galletta BJ, Chuang DY, Cooper JA (2008) Distinct Roles for Arp2/3 Regulators in Actin Assembly and Endocytosis. PLoS Biol 6:e1

    Article  PubMed  Google Scholar 

  • Galletta BJ, Cooper JA (2009) Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 21:20–7

    Article  PubMed  CAS  Google Scholar 

  • Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272:533–35

    Article  PubMed  CAS  Google Scholar 

  • Goodson HV, Anderson BL, Warrick HM, et al. (1996) Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133:1277–91

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb TA, Ivanov IE, Adesnik M, et al. (1993) Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 120:695–710

    Article  PubMed  CAS  Google Scholar 

  • Ho H-YH, Rohatgi R, Lebensohn AM, et al. (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118:203–16

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Zeng G, Ng AYJ, et al. (2003) Identification of novel recognition motifs and regulatory targets for the yeast actin-regulating kinase Prk1p. Mol Biol Cell 14:4871–84

    Article  PubMed  CAS  Google Scholar 

  • Huckaba TM, Gay AC, Pantalena LF, et al. (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–30

    Article  PubMed  CAS  Google Scholar 

  • Idrissi FZ, Grötsch H, Fernández-Golbano IM, et al. (2008) Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J Cell Biol 180:1219–32

    PubMed  CAS  Google Scholar 

  • Innocenti M, Gerboth S, Rottner K, et al. (2005) Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nat Cell Biol 7:969–76

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Erdmann KS, Roux A, et al. (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9:791–804

    Article  PubMed  CAS  Google Scholar 

  • Jonsdottir GA, Li R (2004) Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr Biol 14:1604–9

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–87

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–20

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Galletta BJ, Schmidt KO, et al. (2006) Actin-based motility during endocytosis in budding yeast. Mol Biol Cell 17:1354–63

    Article  PubMed  CAS  Google Scholar 

  • Kübler E, Riezman H (1993) Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 12:2855–62

    PubMed  Google Scholar 

  • Lamaze C, Fujimoto LM, Yin HL, et al. (1997) The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem 272:20332–35

    Article  PubMed  CAS  Google Scholar 

  • Le Clainche C, Pauly BS, Zhang CX, et al. (2007) A Hip1R-cortactin complex negatively regulates actin assembly associated with endocytosis. EMBO J 26:1199–210

    Article  PubMed  Google Scholar 

  • Lila T, Drubin DG (1997) Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol Biol Cell 8:367–85

    PubMed  CAS  Google Scholar 

  • Liu AP, Loerke D, Schmid SL, et al. (2009) Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys J 97:1038–47

    Article  PubMed  CAS  Google Scholar 

  • Madania A, Dumoulin P, Grava S, et al. (1999) The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol Biol Cell 10:3521–38

    PubMed  CAS  Google Scholar 

  • Martin AC, Welch MD, Drubin DG (2006) Arp2/3 ATP hydrolysis-catalysed branch dissociation is critical for endocytic force generation. Nat Cell Biol 8:826–33

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Feldman ME, Wan L, et al. (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–98

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Qualmann B, Kessels MM, et al. (2004) Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83:13–18

    Article  PubMed  CAS  Google Scholar 

  • Mulholland J, Preuss D, Moon A, et al. (1994) Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 125:381–91

    Article  PubMed  CAS  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–86

    Article  PubMed  CAS  Google Scholar 

  • Newpher TM, Smith RP, Lemmon V, et al. (2005) In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. Dev Cell 9:87–98

    Article  PubMed  CAS  Google Scholar 

  • Okreglak V, Drubin DG (2007) Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. J Cell Biol 178:1251–64

    Article  PubMed  CAS  Google Scholar 

  • Otsuki M, Itoh T, Takenawa T (2003) Neural Wiskott-Aldrich syndrome protein is recruited to rafts and associates with endophilin A in response to epidermal growth factor. J Biol Chem 278:6461–69

    Article  PubMed  CAS  Google Scholar 

  • Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J 65:316–24

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–65

    Article  PubMed  CAS  Google Scholar 

  • Qualmann B, Kessels MM, Kelly RB (2000) Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150:F111–16

    Article  PubMed  CAS  Google Scholar 

  • Reider A, Barker S, Mishra S, et al. (2009) Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J 28:3103–3116

    Article  PubMed  CAS  Google Scholar 

  • Rodal AA, Kozubowski L, Goode BL, et al. (2005) Actin and septin ultrastructures at the budding yeast cell cortex. Mol Biol Cell 16:372–84

    Article  PubMed  CAS  Google Scholar 

  • Rodal AA, Manning AL, Goode BL, et al. (2003) Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr Biol 13:1000–8

    Article  PubMed  CAS  Google Scholar 

  • Saffarian S, Cocucci E, Kirchhausen T (2009) Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol 7:e1000191

    Article  PubMed  Google Scholar 

  • Salisbury JL, Condeelis JS, Satir P (1980) Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J Cell Biol 87:132–41

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA (2004) Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5:463–69

    Article  PubMed  CAS  Google Scholar 

  • Sekiya-Kawasaki M, Groen AC, Cope MJTV, et al. (2003) Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J Cell Biol 162:765–72

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85–9

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin V, Beltzner CC, Marchand JB, et al. (2005) Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J Cell Biol 170:637–48

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S (2009) The direction of actin polymerization for vesicle fission suggested from membranes tubulated by the EFC/F-BAR domain protein FBP17. FEBS Lett 583:3401–3404

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Martin AC, Drubin DG (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 11:33–46

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Takano K, Toyooka K, et al. (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27:2817–28

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Yoshida Y, Yamada H (2005) Regulatory mechanisms of dynamin-dependent endocytosis. J Biochem 137:243–47

    Article  PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    Article  PubMed  CAS  Google Scholar 

  • Tang HY, Xu J, Cai M (2000) Pan1p, End3p, and S1a1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol Cell Biol 20:12–25

    Article  PubMed  CAS  Google Scholar 

  • Toret CP, Lee L, Sekiya-Kawasaki M, et al. (2008) Multiple pathways regulate endocytic coat disassembly in Saccharomyces cerevisiae for optimal downstream trafficking. Traffic 9:848–59

    Article  PubMed  CAS  Google Scholar 

  • Toshima J, Toshima JY, Duncan MC, et al. (2007) Negative regulation of yeast Eps15-like Arp2/3 complex activator, Pan1p, by the Hip1R-related protein, Sla2p, during endocytosis. Mol Biol Cell 18:658–68

    Article  PubMed  CAS  Google Scholar 

  • Toshima J, Toshima JY, Martin AC, et al. (2005) Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat Cell Biol 7:246–54

    Article  PubMed  CAS  Google Scholar 

  • Toshima JY, Toshima J, Kaksonen M, et al. (2006) Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc Natl Acad Sci USA 103:5793–98

    Article  PubMed  CAS  Google Scholar 

  • Tsujita K, Suetsugu S, Sasaki N, et al. (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–79

    Article  PubMed  CAS  Google Scholar 

  • Watson HA, Cope MJ, Groen AC, et al. (2001) In vivo role for actin-regulating kinases in endocytosis and yeast epsin phosphorylation. Mol Biol Cell 12:3668–79

    PubMed  CAS  Google Scholar 

  • Wendland B, McCaffery JM, Xiao Q, et al. (1996) A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J Cell Biol 135:1485–500

    Article  PubMed  CAS  Google Scholar 

  • Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18:4383–93

    Article  PubMed  CAS  Google Scholar 

  • Wesp A, Hicke L, Palecek J, et al. (1997) End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 8:2291–306

    PubMed  CAS  Google Scholar 

  • Winter D, Podtelejnikov AV, Mann M, et al. (1997) The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol 7:519–29

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Padilla-Parra S, Park S, et al. (2009) Dynamic interaction of amphiphysin with n-wasp regulates actin assembly. J Biol Chem 284:34244–34256

    Article  PubMed  CAS  Google Scholar 

  • Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–75

    Article  PubMed  CAS  Google Scholar 

  • Yarar D, Waterman-Storer CM, Schmid SL (2007) SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev Cell 13:43–56

    Article  PubMed  CAS  Google Scholar 

  • Young ME, Cooper JA, Bridgman PC (2004) Yeast actin patches are networks of branched actin filaments. J Cell Biol 166:629–35

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Cai M (1999) Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J Cell Biol 144:71–82

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Yu X, Cai M (2001) Regulation of yeast actin cytoskeleton-regulatory complex Pan1p/Sla1p/End3p by serine/threonine kinase Prk1p. Mol Biol Cell 12:3759–72

    PubMed  CAS  Google Scholar 

  • Zhu J, Zhou K, Hao JJ, et al. (2005) Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits. J Cell Sci 118:807–17

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Kaksonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kaksonen, M. (2010). Actin in Clathrin-Mediated Endocytosis. In: Carlier, MF. (eds) Actin-based Motility. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9301-1_4

Download citation

Publish with us

Policies and ethics