Skip to main content

Introduction: Origin, Use and Interpretation of Feynman Diagrams

  • Chapter
  • First Online:
The Genesis of Feynman Diagrams

Part of the book series: Archimedes ((ARIM,volume 26))

Abstract

“Like the silicon chip of more recent years, the Feynman diagram was bringing computation to the masses.” Thus Julian Schwinger, displaying a hint of both disdain and admiration, appraises the enormous impact of Feynman diagrams as a mathematical tool on the daily work of theoretical physicists. And indeed, since Richard P. Feynman (1918–1988) invented them, around the year 1948, and Freeman J. Dyson subsequently systematized them, these diagrams have undeniably become an indispensable tool for performing calculations in modern quantum field theory. They are omnipresent in the theoretical treatments of an important class of elementary particle phenomena, in particular quantum electrodynamics (QED). In modern textbooks on quantum field theory—I will quote from one of them below—they take centre stage, while the teaching of their use is one of the essential components in courses on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Schwinger (1983, p. 343).

  2. 2.

    See, for instance, Tödtli (2004).

  3. 3.

    Kaempffer (1965, p. 209), emph. in the orginal; cf. Kaiser (2005, p. 369).

  4. 4.

    Baeyer (1999, p. 14); cited in Meynell (2008)

  5. 5.

    Feynman (1966, p. 706).

  6. 6.

    Weiner (1966a, pp. 41–42), reprinted with permission. Copyright 1966, American Institute of Physics.

  7. 7.

    Miller (1984, e. g., p. 159).

  8. 8.

    The case of dual diagrams is discussed in Kaiser (2005, p. 366ff).

  9. 9.

    RadTh.

  10. 10.

    Dyson (2006).

  11. 11.

    Dyson (2006, p. 100); see also Sakurai (1967, pp. 240–241).

  12. 12.

    Wüthrich (2007), cf. Goodman (1968).

  13. 13.

    Cf. Graßhoff et al. (2002), Nickelsen (2002).

  14. 14.

    For a comprehensive account of the history of QED, see Schweber (1994).

  15. 15.

    STQED, p. 776.

  16. 16.

    Feynman (1966, p. 707).

  17. 17.

    Tomonaga (1973, p. 411); Dancoff (1939); Schweber (1994, p. 90); Pais (1986, p. 455); Brown (1993, p. 12).

  18. 18.

    Ct. Lacki, Ruegg and Telegdi (1999).

  19. 19.

    Pais (1986, pp. 455–456).

  20. 20.

    For instance Pasternack (1938).

  21. 21.

    See Lamb and Retherford (1947).

  22. 22.

    Kusch and Foley (1948).

  23. 23.

    Schwinger (1948a).

  24. 24.

    Schwinger (1948b, abstract)

  25. 25.

    See, e. g., Feynman’s letter to Mr and Mrs Corben, cited in Schweber (1994, p. 426): “Actually, the self-energy comes out finite and invariant and is therefore representable as a pure mass.”

  26. 26.

    Weinberg (1995, p. 37); cf. Sakurai (1967, p. 240).

  27. 27.

    SM, p. 1754.

  28. 28.

    Here Schwinger refers to particles like mesons which were not yet incorporated into a theory together with electrons, positrons and photons at the end of the 1940s; or even not yet discovered at that time.

  29. 29.

    RadReacI; RadReacII; RadReacIIIa; RadReacIIIb.

  30. 30.

    Although, since some time, mainly working in the field of the history of physics, Schweber was long enough a practising physicist and made notable contributions also to this discipline (Bethe and Schweber 1955, to mention but one of them).

  31. 31.

    Dresden (1993, p. 55).

References

  • Baeyer, H. C. von (1999). ‘Nota Bene’. In: The Sciences (January/February 1999). New York, NY: The New York Academy of Sciences, pp. 12–15.

    Google Scholar 

  • Bethe, H. A. and S. S. Schweber (1955). Mesons and Fields. New York, NY: Row, Peterson.

    Google Scholar 

  • Brown, J. R. (1996). ‘Illustration and Inference’. In: Picturing Knowledge: Historical and Philosophical Problems Concerning the Use of Art in Science. Ed. by B. Baigrie. Toronto, ON: University of Toronto Press. Chap. 8, pp. 250–268.

    Google Scholar 

  • Brown, L. M., ed. (1993). Renormalization. From Lorentz to Landau (and Beyond). New York, NY: Springer.

    Google Scholar 

  • Dancoff, S. M. (1939). ‘On Radiative Corrections for Electron Scattering’. In: Physical Review 55.10 (May 1939), pp. 959–963.

    Article  Google Scholar 

  • Dresden, M. (1993). ‘Renormalization in Historical Perspective—The First Stage’. In: Renormalization. From Lorentz to Landau (and Beyond). Ed. by L. M. Brown. New York, NY: Springer.

    Google Scholar 

  • Dyson, F. J. (1965). ‘Tomonaga, Schwinger, and Feynman Awarded Nobel Prize for Physics’. In: Science. 3rd ser. 150.3696 (Oct. 1965), pp. 588–589.

    Google Scholar 

  • Euler, H. (1936). ‘Über die Streuung von Licht an Licht nach der Diracschen Theorie’. In: Annalen der Physik 418.5, pp. 398–448.

    Article  ADS  Google Scholar 

  • Feynman, R. P. (1966). ‘The Development of the Space-Time View of Quantum Electrodynamics’. In: Science 153.3737. Nobel lecture, pp. 699–708.

    Article  Google Scholar 

  • Galison, P. (1983). ‘The Discovery of The Muon and the Failed Revolution Against Quantum Electrodynamics’. In: Centaurus 26, pp. 262–316.

    Article  MathSciNet  ADS  Google Scholar 

  • Goodman, N. (1968). Languages of Art: An Approach to a Theory of Symbols. Indianapolis, IN: Hackett Publishing.

    Google Scholar 

  • Griffiths, D. (1987). Introduction to Elementary Particles. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Harré, R. (1988). ‘Parsing the Amplitudes’. In: Philosophical Foundations of Quantum Field Theory. Ed. by H. R. Brown and R. Harré. Oxford: Clarendon Press, pp. 59–71.

    Google Scholar 

  • Huggett, N. (2000). ‘Philosophical Foundations of Quantum Field Theory’. In: The British Journal for the Philosophy of Science 51.4, pp. 617–637.

    Article  MathSciNet  Google Scholar 

  • Kaempffer, F. A. (1965). Concepts in Quantum Mechanics. New York, NY: Academic.

    MATH  Google Scholar 

  • Kaiser, D. (2005). Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. Chicago: The University of Chicago Press.

    MATH  Google Scholar 

  • Kusch, P. and H. M. Foley (1948). ‘The Magnetic Moment of the Electron’. In: Physical Review 74.3 (Aug. 1948), pp. 250–263.

    Article  Google Scholar 

  • Lamb, W. E. and R. C. Retherford (1947). ‘Fine Structure of the Hydrogen Atom by a Microwave Method’. In: Physical Review 72.3 (Aug. 1947), pp. 241–243.

    Article  Google Scholar 

  • Mehra, J. (1994). The Beat of a Different Drum: The Life and Science of Richard Feynman. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Meynell, L. (2008). ‘Why Feynman Diagrams Represent’. In: International Studies in the Philosophy of Science 22.1, pp. 39–59.

    Article  MathSciNet  Google Scholar 

  • Miller, A. I. (1984). Imagery in Scientific Thought: Creating 20th-Century Physics. Boston, MA: Birkhäuser.

    Google Scholar 

  • Pais, A. (1986). Inward Bound: Of Matter and Forces in the Physical World. New York, NY: Oxford University Press.

    Google Scholar 

  • Pasternack, S. (1938). ‘Note on the Fine Structure of Ha and Da’. In: Physical Review 54.12 (Dec. 1938), p. 1113.

    Article  Google Scholar 

  • Pauli, W., A. Hermann and K. von Meyenn (1979). Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, Ua: Scientific Correspondence with Bohr, Einstein, Heisenberg, A. o. New York, NY: Springer.

    Google Scholar 

  • Peskin, M. E. and D. V. Schroeder (1995). An Introduction to Quantum Field Theory. Boulder, CO: Westview Press.

    Google Scholar 

  • Sakurai, J. J. (1967). Advanced Quantum Mechanics. Fifth printing, Jan. 1976. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Schweber, S. S. (1986b). ‘Shelter Island, Pocono, and Oldstone: The Emergence of American Quantum Electrodynamics after World War II’. In: Osiris. 2nd ser. 2, pp. 265–302.

    Article  MathSciNet  Google Scholar 

  • Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Schwinger, J. (1948a). ‘On Quantum-Electrodynamics and the Magnetic Moment of the Electron’. In: Physical Review 73.4 (Feb. 1948), pp. 416–417.

    Article  Google Scholar 

  • Schwinger, J. (1948b). ‘Quantum Electrodynamics. I. A Covariant Formulation’. In: Physical Review 74.10 (Nov. 1948), pp. 1439–1461.

    Article  MathSciNet  Google Scholar 

  • Schwinger, J. (1958). Selected Papers on Quantum Electrodynamics. New York, NY: Dover Publications.

    MATH  Google Scholar 

  • Schwinger, J. (1983). ‘Renormalization Theory of Quantum Electrodynamics: An Individual View’. In: The Birth of Particle Physics. Ed. by L. Brown and L. Hoddeson. Cambridge: Cambridge University Press, pp. 329–353.

    Google Scholar 

  • Shin, S.-J. (1994). The Logical Status of Diagrams. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Stueckelberg, E. C. G. (1934). ‘Relativistisch invariante Störungstheorie des Diracschen Elektrons I. Teil: Streustrahlung und Bremsstrahlung’. In: Annalen der Physik 413.4, pp. 367–389.

    Article  ADS  Google Scholar 

  • Stueckelberg, E. C. G. (1938). ‘DieWechselwirkungs Kraefte in der Elektrodynamik und in der Feldtheorie der Kernkraefte (Teil I)’. In: Helvetica Physica Acta 11, pp. 225–244.

    MATH  Google Scholar 

  • Tomonaga, S.-I. (1973). ‘Development of Quantum Electrodynamics’. In: The Physicist’s Conception of Nature. Ed. by J. Mehra. Copyright 1966 by the Nobel Foundation and Elsevier, Netherlands. D. Reidel. Chap. 19, pp. 404–412.

    Google Scholar 

  • Wüthrich, A. (2007). ‘Book review: “Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. David Kaiser.”’ In: Studies in History and Philosophy of Modern Physics 38.3 (Sept. 2007), pp. 586–589.

    Article  Google Scholar 

  • Walton, K. (1990). Mimesis as Make-Believe: On the Foundations of the Representational Arts. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Weinberg, S. (1977). ‘The Search for Unity, Notes for a History of Quantum Field Theory’. In: Daedalus 106.4, pp. 17–35.

    Google Scholar 

  • Weiner, C. (1966a). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 2’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.

    Google Scholar 

  • Weingard, R. (1988). ‘Virtual Particles and the Interpretation of Quantum Field Theory’. In: Philosophical Foundations of Quantum Field Theory. Ed. by H. R. Brown and R. Harré. Oxford: Clarendon Press, pp. 43–58.

    Google Scholar 

  • Weisskopf, V. F. (1934). ‘Über die Selbstenergie des Elektrons’. In: Zeitschrift für Physik 89, pp. 27–39.

    Article  ADS  Google Scholar 

  • Weisskopf, V. F. (1939). ‘On the Self-Energy and the Electromagnetic Field of the Electron’. In: Physical Review 56.1 (July 1939), pp. 72–85.

    Article  Google Scholar 

  • Weisskopf, V. F. (1983). ‘Growing up With Field Theory: The Development of Quantum Electrodynamics’. In: The Birth of Particle Physics. Ed. by L. M. Brown and L. Hoddeson. Cambridge: Cambridge University Press. Chap. 3, pp. 56–81.

    Google Scholar 

  • Wentzel, G. (1943). Einführung in die Quantentheorie der Wellenfelder. Wien: Franz Deuticke.

    MATH  Google Scholar 

  • Dyson, F. J. (2006). Advanced Quantum Mechanics: Second Edition. URL: http://arxiv. org/abs/quant-ph/0608140v1.

  • Kuhn, T. S. (1962). The Structure of Scientific Revolutions. 1st ed. Vol. 2. International Encyclopedia of Unified Science 2. (2nd ed. 1970). Chicago: University of Chicago Press.

    Google Scholar 

  • Lacki, J., H. Ruegg and V. Telegdi (1999). The Road to Stueckelberg’s Covariant Perturbation Theory as Illustrated by Successive Treatments of Compton Scattering. URL: http://arxiv.org/abs/physics/9903023.

  • Graβhoff, G., H.-C. Liess and K. Nickelsen (2002). ‘Visualisiertes Wissen: Eine Einführung in die Analyse wissenschaftlicher Abbildungen’. Unpublished manuscript. History and Philosophy of Science. University of Bern.

    Google Scholar 

  • Nickelsen, K. (2002). ‘Entstehung, Inhalt und Funktion wissenschaftlicher Pflanzenbilder des 18. Jahrhunderts’. PhD thesis. University of Bern.

    Google Scholar 

  • Oppenheimer, J. R. (1950). ‘Electron Theory’. In: Rapports du 8e Conseil de Physique, Solvay. Reprinted in Schwinger 1958, pp. 145–155, 269–281.

    Google Scholar 

  • Tödtli, B. (2004). ‘QCD Corrections to the Wilson Coefficients for \(b\rightarrow\mathit{sl}^{+}l^{-}\) in 2HDMs: Photonic Contributions’. MA thesis. University of Bern.

    Google Scholar 

  • Weinberg, S. (1995). ‘Historical Introduction’. In: The Quantum Theory of Fields. Cambridge: Cambridge University Press. Chap. 1, pp. 1–48.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Wüthrich .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wüthrich, A. (2010). Introduction: Origin, Use and Interpretation of Feynman Diagrams. In: The Genesis of Feynman Diagrams. Archimedes, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9228-1_1

Download citation

Publish with us

Policies and ethics