Skip to main content

Application of Relaxation Methods in Materials Science: From the Macroscopic Response of Elastomers to Crystal Plasticity

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

  • 826 Accesses

Abstract

In this contribution we review some aspects of the mathematical analysis of fine structures in materials in three distinct systems: small deformations within the range of pseudoelasticity in shape memory materials, soft elasticity for nematic and smectic elastomers, and relaxation via formation of microstructures in single crystal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Conti, S., Desimone, A. and Dolzmann, G., Relaxation of some transversally isotropic energies and applications to smectic A elastomers, Math. Models Methods Appl. Sci. 18(1), 2008, 1–20.

    Article  MathSciNet  Google Scholar 

  2. Adams, J. and Warner, M., The elasticity of smectic-a elastomers, Phys. Rev. E 71, 2005, 1–17.

    Article  Google Scholar 

  3. Albin, N., Conti, S. and Dolzmann, G., Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh A, 139, 2009, 685–708.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ball, J.M. A version of the fundamental theorem for young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, Proceedings of an NSF-CNRS Joint Seminar, Springer, 1989, pp. 207–215.

    Google Scholar 

  5. Ball, J.M. and James, R.D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100(1), 1987, 13–52.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ball, J.M. and James, R.D., Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. Roy. Soc. London A 338, 1992, 389–450.

    Article  MATH  Google Scholar 

  7. Ball, J.M. and Murat, F., W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58(3), 1984, 225–253.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bhattacharya, K. Microstructure of Martensite. Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford Series on Materials Modelling, Oxford University Press, Oxford, 2003.

    Google Scholar 

  9. Bladon, P., Terentjev, E.M. and Warner, M., Transitions and instabilities in liquid crystal elastomers, Phys Rev E 47, 1993, R3838–R3840.

    Article  Google Scholar 

  10. Carstensen, C., Hackl, K. and Mielke, A., Non-convex potentials and microstructures in finitestrain plasticity, Royal Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 2002, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chipot, M. and Kinderlehrer, D., Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 3, 1988, 237–277.

    MathSciNet  Google Scholar 

  12. Conti, S., Relaxation of single-slip single-crystal plasticity with linear hardening, in Multiscale Materials Modeling, P. Gumbsch (Ed.), Fraunhofer IRB, Freiburg, 2006, pp. 30–35.

    Google Scholar 

  13. Conti, S., Quasiconvex functions incorporating volumetric constraints are rank-one convex, J. Math. Pures Appl. (9) 90(1), 2008, 15–30.

    MATH  MathSciNet  Google Scholar 

  14. Conti, S., DeSimone, A. and Dolzmann, G., Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers, Phys. Rev. E 66, 2002, #061710.

    Article  Google Scholar 

  15. Conti, S., DeSimone, A. and Dolzmann, G., Soft elastic response of stretched sheets of nematic elastomers: A numerical study, J. Mech. Phys. Solids 50, 2002, 1431–1451.

    Article  MATH  MathSciNet  Google Scholar 

  16. Conti, S., Dolzmann, G. and Klust, C., Relaxation of a class of variational models in crystal plasticity, Royal Soc. Lond. Proc. Ser. A Math. Phys. Engrg. Sci. 465, 2009, 1735–1742.

    Article  MATH  MathSciNet  Google Scholar 

  17. Conti, S., Dolzmann, G. and Klust, C., work in preparation, 2009.

    Google Scholar 

  18. Conti, S. and Theil, F., Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal. 178(1), 2005, 125–148.

    Article  MATH  MathSciNet  Google Scholar 

  19. Dacorogna, B., Direct Methods in the Calculus of Variations, second ed., Applied Mathematical Sciences, Vol. 78, Springer, New York, 2008.

    Google Scholar 

  20. Dacorogna, B. and Marcellini, P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, Vol. 37, Birkhäuser, Boston, MA, 1999.

    Google Scholar 

  21. DeSimone, A. and Dolzmann, G. Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Rational Mech. Anal. 161, 2002, 181–204.

    Article  MATH  MathSciNet  Google Scholar 

  22. Dolzmann, G. and Kirchheim, B., Liquid-like behavior of shape memory alloys, C. R. Math. Acad. Sci. Paris 336(5), 2003, 441–446.

    MATH  MathSciNet  Google Scholar 

  23. Dolzmann, G. and Müller, S., Microstructures with finite surface energy: The two-well problem, Arch. Ration. Mech. Anal. 132(2), 1995, 101–141.

    Article  MATH  Google Scholar 

  24. Kirchheim, B., Lipschitz minimizers of the 3-well problem having gradients of bounded variation, Preprints, Max Planck Institute for Mathematics in the Sciences, Leipzig, 12, 1998.

    Google Scholar 

  25. Kirchheim, B., Rigidity and Geometry of Microstructures, Lecture Notes 16, Max Planck Institute for Mathematics in the Sciences, Leipzig, 2003.

    Google Scholar 

  26. Kohn, R.V. and Strang, D., Optimal design and relaxation of variational problems I, II, III. Comm. Pure Appl. Math. 39, 1986, 113–137, 139–182, 353–377.

    Article  MATH  MathSciNet  Google Scholar 

  27. Kundler, I. and Finkelmann, H., Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromol. Rapid Commun. 16, 1995, 679–686.

    Article  Google Scholar 

  28. Müller, S., Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture Notes in Math., Vol. 1713, Springer, Berlin, 1999, pp. 85–210.

    Google Scholar 

  29. Müller, S. and Šverák, V., Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS) 1(4), 1999, 393–422.

    Article  MATH  MathSciNet  Google Scholar 

  30. Ortiz, M. and Repetto, E.A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids 47(2), 1999, 397–462.

    Article  MATH  MathSciNet  Google Scholar 

  31. Šilhavý, M., Ideally soft nematic elastomers, Netw. Heterog. Media 2, 2007, 279–311.

    MATH  MathSciNet  Google Scholar 

  32. Tartar, L., The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Equations, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 111, Reidel, 1983, pp. 263–285.

    Google Scholar 

  33. Tartar, L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Royal Soc. Edinburgh Sect. A 115, 1990, 193–230.

    MATH  MathSciNet  Google Scholar 

  34. Verwey, G.C., Warner, M. and Terentjev, E.M., Elastic instability and stripe domains in liquid crystalline elastomers, J. Phys. II France 6, 1996, 1273–1290.

    Article  Google Scholar 

  35. Warner, M. and Terentjev, E.M., Liquid Crystal Elastomers, International Series of Monographs on Physics, Vol. 120, Oxford University Press, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dolzmann, G. (2010). Application of Relaxation Methods in Materials Science: From the Macroscopic Response of Elastomers to Crystal Plasticity. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics