Skip to main content

FE2-Simulation of Microheterogeneous Steels Based on Statistically Similar RVEs

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

A main problem of direct homogenization methods is the high computational cost, when we have to deal with large random microstructures. This leads to a large number of history variables which needs a large amount of memory, and moreover a high computation time. We focus on random microstructures consisting of a continuous matrix phase with a high number of embedded inclusions. In this contribution a method is presented for the construction of statistically similar representative volume elements (SSRVEs) which are characterized by a much less complexity than usual random RVEs in order to obtain an efficient simulation tool. The basic idea of the underlying procedure is to find a simplified SSRVE, whose selected statistical measures under consideration are as close as possible to the ones of the original microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Balzani and J. Schröder, Some basic ideas for the reconstruction of statistically similar microstructures for multiscale simulations, Proceedings of Applied Mathematics and Mechanics 8, 2008, 10533–10534.

    Article  Google Scholar 

  2. M. Beran, Statistical Continuum Theories, Wiley, 1968.

    MATH  Google Scholar 

  3. R. Hill, Elastic properties of reinforced solids: some theoretical principles, Journal of the Mechanics and Physics of Solids 11, 1963, 357–372.

    Article  MATH  Google Scholar 

  4. C. Miehe, J. Schröder and J. Schotte, Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials, Computer Methods in Applied Mechanics and Engineering 171, 1999, 387–418.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Ohser and F. Mücklich, Statistical Analysis of Microstructures in Materials Science, J. Wiley & Sons, 2000.

    MATH  Google Scholar 

  6. E. Parzen, Stochastic Processes. Holden-Day, San Francisco, CA, 1992.

    Google Scholar 

  7. G.L. Povirk. Incorporation of microstructural information into models of two-phase materials, Acta Metallurgica et Materialia 43(8), 1995, 3199–3206.

    Article  Google Scholar 

  8. J. Schröder, Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen, Habilitationsschrift, Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart, 2000.

    Google Scholar 

  9. J. Schröder, D. Balzani, H. Richter, H.P. Schmitz and L. Kessler, Simulation of microheterogeneous steels based on a discrete multiscale approach, in Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, P. Hora (Ed.), 2008, pp. 379–383.

    Google Scholar 

  10. R.J.M. Smit, W.A.M. Brekelmans and H.E.H. Meijer, Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Computer Methods in Applied Mechanics and Engineering 155, 1998, 181–192.

    Article  MATH  Google Scholar 

  11. S. Torquato, Random Heterogeneous Materials. Microstructure and Macroscopic Properties, Springer, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Balzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Balzani, D., Schröder, J., Brands, D. (2010). FE2-Simulation of Microheterogeneous Steels Based on Statistically Similar RVEs. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics