Skip to main content

Error Bounds for Space-Time Discretizations of a 3D Model for Shape-Memory Materials

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

This paper deals with error estimates for space-time discretizations of a three-dimensional model for isothermal stress-induced transformations in shapememory materials. After recalling existence and uniqueness results, a fully-discrete approximation is presented and an explicit space-time convergence rate of order \(h^{\alpha/2} + \tau^{1/2}\) for some α ∈ (0,1] is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Alberty, C. Carstensen, and D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening, Comput. Methods Appl. Mech. Engrg. 171(3–4), 1999, 175–204.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arndt, M. Griebel, and T. Roubícek, Modelling and numerical simulation of martensitic transformation in shape memory alloys, Cont. Mech. Thermodyn. 15, 2003, 463–485.

    Article  MATH  Google Scholar 

  3. J.-P. Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods, Ann. Scuola Norm. Sup. Pisa (3) 21, 1967, 599–637.

    MathSciNet  MATH  Google Scholar 

  4. F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasistatic evolution of shape-memory materials, M3AS Math. Models Meth. Appl. Sci. 18(1), 2008, 125–164.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with residual plasticity, Int. J. Plasticity 23(2), 2007, 207–226.

    Article  MATH  Google Scholar 

  6. F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations, Int. J. Numer. Meth. Engrg. 55, 2002, 1255–1284.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications, Int. J. Numer. Meth. Engrg. 61, 2004, 716–737.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Auricchio and E. Sacco, Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings, Int. J. Solids Struct. 38, 2001, 6123–6145.

    Article  MATH  Google Scholar 

  9. M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  10. E. Fried and M. Gurtin, Dynamic solid-solid transitions with phase characterized by an order parameter, Physica D 72(4), 1994, 287–308.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées (Research in Applied Mathematics), Vol. 22, Masson, Paris, 1992.

    Google Scholar 

  12. W. Han and B.D. Reddy, Plasticity (Mathematical Theory and Numerical Analysis), Interdisciplinary Applied Mathematics, Vol. 9. Springer-Verlag, New York, 1999.

    Google Scholar 

  13. P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case, M2AN Math. Model. Numer. Anal. 39(4), 2005, 727–753.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kružík, A. Mielke and T. Roubícek, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi, Meccanica 40, 2005, 389–418.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Mielke, Evolution in rate-independent systems, in C. Dafermos and E. Feireisl (Eds.), Handbook of Differential Equations, Evolutionary Equations, Vol. 2, Elsevier, Amsterdam, 2005, pp. 461–559.

    Google Scholar 

  16. A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in R. Helmig, A. Mielke and B.I. Wohlmuth (Eds.), Multifield Problems in Solid and Fluid Mechanics, Lecture Notes in Applied and Computational Mechanics, Vol. 28, Springer-Verlag, Berlin, 2006, pp. 351–379.

    Google Scholar 

  17. A. Mielke, A model for temperature-induced phase transformations in finite-strain elasticity, IMA J. Appl. Math. 72(5), 2007, 644–658.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Mielke and T. Roubícek, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul. 1, 2003, 571–597.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Mielke and T. Roubícek, Numerical approaches to rate-independent processes and applications in inelasticity, M2AN Math. Model. Numer. Anal. 43, 2009, 399–428.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl. (NoDEA) 11, 2004, 151–189 (accepted July 2001).

    MathSciNet  MATH  Google Scholar 

  21. A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error estimates for space-time discretizations of a rate-independent variational inequality, SIAM J. Numer. Anal., 2009, submitted.

    Google Scholar 

  22. A. Mielke, L. Paoli and A. Petrov, On the existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys, SIAM J. Math. Anal. 41, 2009, 1388–1414.

    Article  MathSciNet  Google Scholar 

  23. J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11, 1968, 346–348.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, Vol. 23, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  25. A. Souza, E. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, Eur. J. Mech. A/Solids 17, 1998, 789–806.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mielke, A., Paoli, L., Petrov, A., Stefanelli, U. (2010). Error Bounds for Space-Time Discretizations of a 3D Model for Shape-Memory Materials. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics