Skip to main content

Existence Theory for Finite-Strain Crystal Plasticity with Gradient Regularization

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

We provide a global existence result for the time-continuous elastoplasticity problem using the energetic formulation. The deformation gradient is decomposed multiplicatively into an elastic part and the plastic tensor P, which is driven by the plastic slip strain rates \(\dot{p}\) j. We allow for self-hardening as well as crosshardening. The strain gradients ∇pj and ∇P are used to regularize the problem, thus introducing a length scale and preventing the formation of microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Bažant and M. Jirásek. Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Engrg. Mech 128(11), 2002, 1119–1149.

    Google Scholar 

  2. J.M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal 63(4), 1976, 337–403.

    Article  MathSciNet  Google Scholar 

  3. S. Bartels, C. Carstensen, K. Hackl and U. Hoppe. Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg 193, 2004, 5143–5175.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Conti, G. Dolzmann and C. Klust. Relaxation of a class of variational models in crystal plasticity. Proc. R. Soc. Lond. Ser. A 465(2106), 2009, 1735–1742.

    MATH  MathSciNet  Google Scholar 

  5. C. Carstensen, K. Hackl and A. Mielke. Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London Ser. A 458, 2002, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Conti, P. Hauret and M. Ortiz. Concurrent multiscale computing of deformation microstructure by relaxation and local enrichment with application to single-crystal plasticity. Multiscale Modeling and Simulation 6, 2007, 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Conti and M. Ortiz. Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal 176(1), 2005, 103–147.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Conti and F. Theil. Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal 178, 2005, 125–148.

    Article  MATH  MathSciNet  Google Scholar 

  9. O.W. Dillon and J. Kratochvil. A strain gradient theory of plasticity. Int. J. Solids Structures 6(12), 1970, 1513–1533.

    Article  MATH  Google Scholar 

  10. N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Adv. Appl. Mech 33, 1997, 295–361.

    Article  Google Scholar 

  11. G. Francfort and A. Mielke. Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math 595, 2006, 55–91.

    MATH  MathSciNet  Google Scholar 

  12. E. Gürses, A. Mainik, C. Miehe and A. Mielke. Analytical and numerical methods for finitestrain elastoplasticity. In R. Helmig, A. Mielke and B. Wohlmuth (Eds.), Multifield Problems in Solid and Fluid Mechanics, Lecture Notes in Applied and Computational Mechanics, Vol. 28, Springer-Verlag, Berlin, 2006, pp. 443–481.

    Chapter  Google Scholar 

  13. M.E. Gurtin. On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48(5), 2000, 989–1036.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 2002, 5–32.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Hackl. Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45(5), 1997, 667–688.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Hackl, A. Mielke and D. Mittenhuber. Dissipation distances in multiplicative elastoplasticity. In W. Wendland and M. Efendiev (Eds.), Analysis and Simulation of Multifield Problems, Springer-Verlag, 2003, pp. 87–100.

    Google Scholar 

  17. E. Lee. Elastic-plastic deformation at finite strains. J. Appl. Mech 36, 1969, 1–6.

    MATH  Google Scholar 

  18. A. Mainik and A. Mielke. Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci 19(3), 2009, 221–248.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton, A. Weinstein and P.J. Holmes (Eds.), Geometry, Dynamics, and Mechanics, Springer-Verlag, New York, 2002, pp. 61–90.

    Chapter  Google Scholar 

  20. A. Mielke. Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn 15, 2003, 351–382.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Mielke. Evolution in rate-independent systems. In C. Dafermos and E. Feireisl (Eds), Handbook of Differential Equations, Evolutionary Equations, Vol. 2, Elsevier, Amsterdam, 2005, pp. 461–559.

    Chapter  Google Scholar 

  22. A. Mielke, T. Roubíček and U. Stefanelli. Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Diff. Eqns 31, 2008, 387–416.

    Article  MATH  Google Scholar 

  23. H.-B. Mühlhaus and E.C. Aifantis. A variational principle for gradient plasticity. Int. J. Solids Structures 28(7), 1991, 845–857.

    Article  MATH  Google Scholar 

  24. P. Neff. Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. Quart. Appl. Math 63(1), 2005, 88–116.

    MATH  MathSciNet  Google Scholar 

  25. P. Neff and C. Wieners. Comparison of models for finite plasticity: A numerical study. Comput. Vis. Sci 6(1), 2003, 23–35.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Ortiz and E. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 1999, 397–462.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mielke, A. (2010). Existence Theory for Finite-Strain Crystal Plasticity with Gradient Regularization. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics