Skip to main content

Remote Sensing for Water Quality Monitoring in Apalachicola Bay, USA

  • Chapter
  • First Online:
Advances in Earth Observation of Global Change

Abstract

In this paper, we provide a review on remote sensing of water quality in coastal and estuarine ecosystems. As a case study, we further describe the use of remote sensing to estimate total suspended solids (TSS) and chlorophyll-a in an estuarine ecosystem, Apalachicola Bay, which is located along the northeastern Gulf of Mexico, USA. Based on the remote sensor data and the regression models derived for the Apalachicola Bay, we found that TSS concentrations indicate strong sediment resuspension, which may be induced by the passage of Hurricane Frances in 2004. We also examine the effects of river flow on estuarine chlorophyll-a concentrations by using remote sensor data, showing higher chlorophyll-a concentrations during the high-flow season. This study demonstrates that remote sensing can be used as an effective tool for water-quality monitoring in coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen SS, Huang WR, Wang HQ, Li D (2009) Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA. Remote Sens Environ 12:2670–2681

    Article  Google Scholar 

  • Dekshenieks MM, Hofmann EE, Klinck JM, Powell EN (2000) Quantifying the effects of environmental change on an oyster population: a modeling study. Estuaries 23:593–610

    Article  Google Scholar 

  • Fang LG, Chen SS, Zhang LX, Zeng YH (2008) EO-1 hyperion and ALI inter-sensor comparison of retrieval river suspended solid concentration in Pearl River Estuary, Hydrological Sciences for Managing Water Resources in the Asian Developing World. IAHS-AISH Publication (No. 319):337–346

    Google Scholar 

  • Fang LG, Chen SS, Li D, Li HL (2009) Use of reflectance ratios as a proxy for coastal water constituent monitoring in the Pearl River Estuary. Sensor 9:656–673

    Article  Google Scholar 

  • Gitelson, AA, Gritz U, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 3:271–282

    Article  Google Scholar 

  • Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophll content in crops. Geophys Res Lett 32, L08403. doi: 10.1029/2005GL022688

    Article  Google Scholar 

  • Gitelson AA, Schalles JF, Hladik CM (2007) Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens Environ 4:464–472

    Article  Google Scholar 

  • Gitelson AA, Dall’Olmo G, Moses W, Rundquist DC, Barrow T, Fisher TR, Gurlin D, Holz J (2008) A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens Environ 9:3582–3593

    Article  Google Scholar 

  • Gons HJ, Auer MT, Effler SW (2008) MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens Environ 11:4098–4106

    Article  Google Scholar 

  • Gower JFR, Doerffer R, Borstad GA (1999) Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int J Remote Sens 20:1771–1786

    Article  Google Scholar 

  • Han L, Jordan KJ (2005) Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM+ data. Int J Remote Sens 23:5245–5254

    Article  Google Scholar 

  • Han L, Rundquist DC (1994) The response of both surface reflectance and underwater light field to various levels of suspended sediments: preliminary results. Photogramm Eng Remote Sens 12:1463–1471

    Google Scholar 

  • Huang W (2009) Hydrodynamic modeling and ecohydrological analysis of river inflow effects on Apalachicola Bay, Florida, USA. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2009.07.032

    Google Scholar 

  • Huang W, Jones K, Wu T (2002) Modeling surface wind effects on subtidal salinity in Apalachicola Bay. Estuar Coast Shelf Sci 1:33–46

    Article  Google Scholar 

  • Huang W, Chen S, Yang X, Wang H (2009) Remote sensing analysis of river flow effects on chlorophyll-a Concentration in Apalachicola Bay Ecosystem, Florida, USA. Presentation in the 2nd International Conference on Earth Observation for Global Changes, Chengdu, Sichuan, China, May 25–29, 2009

    Google Scholar 

  • Kallio K, Kutser T, Hannonen T, Koponen S, Pulliainen J, Vepsäläinen J, Pyhälahti T (2001) Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci Total Environ 1–3:59–77

    Article  Google Scholar 

  • Koponen S, Attila J, Pulliainen J, Kallio K, Pyhälahti T, Lindfors A, Rasmus K, Hallikainen M (2007) A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland (Baltic Sea). Cont Shelf Res 2:228–244

    Article  Google Scholar 

  • Le CF, Li YM, Zha Y, Sun D, Huang CC, Lu H (2009) A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens Environ 6:1175–1182

    Article  Google Scholar 

  • Livingston RJ (1984) The ecology of the Apalachicola Bay system: an estuarine profile. U.S. Fish and Wildlife Service, Office of Biological Services. FWS/OBS-82/05

    Google Scholar 

  • Livingston RJ, Lewis FG, Woodsum GC, Niu XF, Galperin B, Huang W, Christensen J, Monaco M, Battista T, Klein J, Howell IV, Ray GL (2000) Modeling oyster population response to variation in freshwater input. Estuar Coast Shelf Sci 50:655–672

    Article  Google Scholar 

  • Miller RL, McKee BA (2004) Using MODIS Terra 250-m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ 1–2:259–266

    Article  Google Scholar 

  • Ritchie JC, Schiebe FR, McHenry JR (1976) Remote sensing of suspended sediments in surface water. Photogramm Eng Remote Sens 2:1539–1545

    Google Scholar 

  • Wang HQ, Huang W, Harwell MA, Edmiston L, Johnson E, Hsieh P, Milla K, Christensen J, Stewart J, Liu X (2008). Modeling oyster growth rate by coupling oyster population and hydrodynamic models for Apalachicola Bay, Florida, USA. Ecol Model 211:77–89

    Article  Google Scholar 

  • Wang HQ, Hladik CM, Milla K, Huang WR, Edmiston L, Harwell MA, Schalles JF (2009). Detecting and mapping water quality indicators in Apalachicola Bay, Florida using MODIS Terra 250-m imagery. Int J Remote Sens 31(2):439–453

    Google Scholar 

  • Werdell PJ, Bailey SW, Franz BA, Harding LW Jr, Feldman GC, McClain CR (2009) Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens Environ 6:1319–1330

    Article  Google Scholar 

  • Whitfield WK Jr, Beaumariage DS (1977). Shellfish management in Apalachicola Bay: past, present, and future. In: Livingston RJ, Joyce EA Jr (eds) Proceedings of the Conference on the Apalachicola Drainage System, Florida Department of Natural Department of Natural Resources Marine Research, Florida

    Google Scholar 

  • Zawada DG, Hu CM, Clayton T, Chen ZQ, Brock JC, Muller-Karger FE (2007) Remote sensing of particle backscattering in Chesapeake Bay: A 6-year SeaWiFS retrospective view. Estuar Coast Shelf Sci 3–4:792–806

    Article  Google Scholar 

  • Zimba PV, Gitelson A (2006) Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 1–4:272–286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenrui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Huang, W., Chen, S., Yang, X. (2010). Remote Sensing for Water Quality Monitoring in Apalachicola Bay, USA. In: Chuvieco, E., Li, J., Yang, X. (eds) Advances in Earth Observation of Global Change. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9085-0_6

Download citation

Publish with us

Policies and ethics