Skip to main content

Survival and Trafficking of Yersinia pestis in Non-acidified Phagosomes in Murine Macrophages

  • Conference paper
  • First Online:
The Challenge of Highly Pathogenic Microorganisms
  • 751 Accesses

Abstract

Yersinia pestis is a facultative intracellular bacterial pathogen. Survival of Y. pestis in macrophages is thought to play an important role in pathogenesis during the earliest stages of plague. Recent studies have identified several bacterial genes important for survival in macrophages, and determined that Y. pestis inhabits a compartment called the Yersinia-containing vacuole (YCV), which acquires markers of late endosomes or lysosomes. Furthermore, studies have shown the ability of Y. pestis to survive in macrophages activated with the cytokine IFNγ. Some vacuolar pathogens appear to co-opt the process of autophagy for survival in host cells. Alternatively, xenophagy is an autophagic process that is upregulated in activated macrophages and functions to kill bacteria in acidic autophagosomes. Studies were undertaken to investigate the mechanism of Y. pestis survival in phagosomes of naïve and activated macrophages, and to determine if the pathogen avoids or co-opts autophagy. Co-localization of the YCV with markers of autophagosomes or acidic lysosomes, and the pH of the YCV, was determined by microscopic imaging of infected macrophages. Results showed that YCVs could contain double membranes characteristic of autophagosomes and co-localized with a marker of autophagic membranes. Interestingly, YCVs failed to acidify below pH of 7. In addition, Y. pestis survived equally well in macrophages proficient or deficient for autophagy, showing that the bacterium does not co-opt autophagy for intracellular survival. It is concluded that although Y. pestis can reside in autophagosomes, the pathogen avoids destruction by xenophagy by preventing vacuole acidification. Y. pestis may actively prevent phagosome acidification in either naïve or activated macrophages by preventing delivery of the vacuolar ATPase (vATPase) to the YCV or direct inactivation of the vATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, D. O. & Hamilton, T. A. (1984) The cell biology of macrophage activation. Annu Rev Immunol, 2, 283–318.

    Article  PubMed  CAS  Google Scholar 

  • Aderem, A. & Underhill, D. M. (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 17, 593–623.

    Article  PubMed  CAS  Google Scholar 

  • Birmingham, C. L., Canadien, V., Kaniuk, N. A., Steinberg, B. E., Higgins, D. E. & Brumell, J. H. (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature, 451, 350–4.

    Article  PubMed  CAS  Google Scholar 

  • Bliska, J. B. & Casadevall, A. (2009) Intracellular pathogenic bacteria and fungi – a case of convergent evolution? Nat Rev Microbiol, 7, 165–71.

    PubMed  CAS  Google Scholar 

  • Brumell, J. H. & Grinstein, S. (2004) Salmonella redirects phagosomal maturation. Curr Opin Microbiol, 7, 78–84.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, T. W. & Bacon, G. A. (1956) The basis of virulence in Pasteurella pestis: an antigen determining virulence. Br J Exp Pathol, 37, 481–93.

    PubMed  Google Scholar 

  • Carniel, E. (2002) Plasmids and pathogenicity islands of Yersinia. Curr Top Microbiol Immunol, 264, 89–108.

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh, D. C. & Randall, R. (1959) The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of fleaborne plague. J Immunol, 85, 348–63.

    Google Scholar 

  • Charnetzky, W. T. & Shuford, W. W. (1985) Survival and growth of Yersinia pestis within macrophages and an effect of the loss of the 47-megadalton plasmid on growth in macrophages. Infect Immun, 47, 234–41.

    PubMed  CAS  Google Scholar 

  • Chua, J., Vergne, I., Master, S. & Deretic, V. (2004) A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr Opin Microbiol, 7, 71–7.

    Article  PubMed  CAS  Google Scholar 

  • Cuellar-Mata, P., Jabado, N., Liu, J., Furuya, W., Finlay, B. B., Gros, P. & Grinstein, S. (2002) Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J Biol Chem, 277, 2258–65.

    Article  PubMed  CAS  Google Scholar 

  • Digiuseppe Champion, P. A. & Cox, J. S. (2007) Protein secretion systems in Mycobacteria. Cell Microbiol, 9, 1376–84.

    Article  PubMed  Google Scholar 

  • Du, Y., Rosqvist, R. & Forsberg, A. (2002) Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun, 70, 1453–60.

    Article  PubMed  CAS  Google Scholar 

  • Duclos, S. & Desjardins, M. (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol, 2, 365–77.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, R. K., Guina, T. & Miller, S. I. (1999) How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis, 179, S326–30.

    Article  PubMed  CAS  Google Scholar 

  • Finegold, M. J. (1969) Pneumonic plague in monkeys. An electron microscopic study. Am. J. Pathol., 54, 167–85.

    PubMed  CAS  Google Scholar 

  • Goulding, C. W., Bowers, P. M., Segelke, B., Lekin, T., Kim, C. Y., Terwilliger, T. C. & Eisenberg, D. (2007) The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function. J Mol Biol, 365, 275–83.

    Article  PubMed  CAS  Google Scholar 

  • Grabenstein, J. P., Fukuto, H. S., Palmer, L. E. & Bliska, J. B. (2006) Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun, 74, 3727–41.

    Article  PubMed  CAS  Google Scholar 

  • Groisman, E. A. (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol, 183, 1835–42.

    Article  PubMed  CAS  Google Scholar 

  • Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F. C. & Holden, D. W. (1998) Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol, 30, 163–74.

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch, B. J. (2005) The evolution of flea-borne transmission in Yersinia pestis. Curr Issues Mol Biol, 7, 197–212.

    PubMed  CAS  Google Scholar 

  • Hinnebusch, B. J. & Erickson, D. L. (2008) Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol, 322, 229–48.

    Article  PubMed  CAS  Google Scholar 

  • Huynh, K. K. & Grinstein, S. (2007) Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev, 71, 452–62.

    Article  PubMed  CAS  Google Scholar 

  • Inglesby, T. V., Dennis, D. T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Fine, A. D., Friedlander, A. M., Hauer, J., Koerner, J. F., Layton, M., Mcdade, J., Osterholm, M. T., O'toole, T., Parker, G., Perl, T. M., Russell, P. K., Schoch-Spana, M. & Tonat, K. (2000) Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA, 283, 2281–90.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, W. A. & Surgalla, M. J. (1968) Plague bacillus: survival within host phagocytes. Science, 163, 950–2.

    Article  Google Scholar 

  • Jarrett, C. O., Deak, E., Isherwood, K. E., Oyston, P. C., Fischer, E. R., Whitney, A. R., Kobayashi, S. D., Deleo, F. R. & Hinnebusch, B. J. (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis, 190, 783–92.

    Article  PubMed  Google Scholar 

  • Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D. K., Aliev, G., Askew, D. S., Baba, M., Baehrecke, E. H., Bahr, B. A., Ballabio, A., Bamber, B. A., Bassham, D. C., Bergamini, E., Bi, X., Biard-Piechaczyk, M., Blum, J. S., Bredesen, D. E., Brodsky, J. L., Brumell, J. H., Brunk, U. T., Bursch, W., Camougrand, N., Cebollero, E., Cecconi, F., Chen, Y., Chin, L. S., Choi, A., Chu, C. T., Chung, J., Clarke, P. G., Clark, R. S., Clarke, S. G., Clave, C., Cleveland, J. L., Codogno, P., Colombo, M. I., Coto-Montes, A., Cregg, J. M., Cuervo, A. M., Debnath, J., Demarchi, F., Dennis, P. B., Dennis, P. A., Deretic, V., Devenish, R. J., Di Sano, F., Dice, J. F., Difiglia, M., Dinesh-Kumar, S., Distelhorst, C. W., Djavaheri-Mergny, M., Dorsey, F. C., Droge, W., Dron, M., Dunn, W. A., JR., Duszenko, M., Eissa, N. T., Elazar, Z., Esclatine, A., Eskelinen, E. L., Fesus, L., Finley, K. D., Fuentes, J. M., Fueyo, J., Fujisaki, K., Galliot, B., Gao, F. B., Gewirtz, D. A., Gibson, S. B., Gohla, A., Goldberg, A. L., Gonzalez, R., Gonzalez-Estevez, C., Gorski, S., Gottlieb, R. A., Haussinger, D., HE, Y. W., Heidenreich, K., Hill, J. A., Hoyer-Hansen, M., Hu, X., Huang, W. P., Iwasaki, A., Jaattela, M., Jackson, W. T., Jiang, X., Jin, S., Johansen, T., Jung, J. U., Kadowaki, M., Kang, C., Kelekar, A., Kessel, D. H., Kiel, J. A., Kim, H. P., Kimchi, A., Kinsella, T. J., Kiselyov, K., Kitamoto, K., Knecht, E., et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4, 151–75.

    PubMed  CAS  Google Scholar 

  • Knodler, L. A. & Steele-Mortimer, O. (2003) Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic, 4, 587–99.

    Article  PubMed  CAS  Google Scholar 

  • Lathem, W. W., Crosby, S. D., Miller, V. L. & Goldman, W. E. (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A, 102, 17786–91.

    Article  PubMed  CAS  Google Scholar 

  • Levine, B. & Deretic, V. (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol, 7, 767–77.

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski, R. A., Kenny, D. J., Taylor, R., Rees, D. G., Hartley, M. G. & Oyston, P. C. (2005) Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect Immun, 73, 7142–50.

    Article  PubMed  CAS  Google Scholar 

  • Meresse, S., Steele-Mortimer, O., Moreno, E., Desjardins, M., Finlay, B. & Gorvel, J. P. (1999) Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat. Cell. Biol., 1, E183–8.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, K. F. (1950) Immunity in plague; a critical consideration of some recent studies. J Immunol, 64, 139–63.

    PubMed  CAS  Google Scholar 

  • Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature, 451, 1069–75.

    Article  PubMed  CAS  Google Scholar 

  • Noel, B. L., Lilo, S., Capurso, D., Hill, J. & Bliska, J. B. (2009) Yersinia pestis can bypass protective antibodies to LcrV and activation with gamma interferon to survive and induce apoptosis in murine macrophages. Clin Vaccine Immunol, 16, 1457–66.

    Article  PubMed  CAS  Google Scholar 

  • Ochman, H., Soncini, F. C., Solomon, F. & Groisman, E. A. (1996) Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A, 93, 7800–4.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, M. & Sasakawa, C. (2006) Bacterial evasion of the autophagic defense system. Curr Opin Microbiol, 9, 62–8.

    Article  PubMed  CAS  Google Scholar 

  • Oh, Y. K., Alpuche-Aranda, C., Berthiaume, E., Jinks, T., Miller, S. I. & Swanson, J. A. (1996) Rapid and complete fusion of macrophage lysosomes with phagosomes containing Salmonella typhimurium. Infect Immun, 64, 3877–83.

    PubMed  CAS  Google Scholar 

  • Oyston, P. C. F., Dorrell, N., Williams, K., Li, S.-R., Green, M., Titball, R. W. & Wren, B. (2000) The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect. Immun., 68, 3419–25.

    Article  PubMed  CAS  Google Scholar 

  • Perry, R. D. & Fetherston, J. D. (1997) Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev, 10, 35–66.

    PubMed  CAS  Google Scholar 

  • Prentice, M. B. & Rahalison, L. (2007) Plague. Lancet, 369, 1196–207.

    Article  PubMed  Google Scholar 

  • Pujol, C. & Bliska, J. B. (2003) The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun, 71, 5892–9.

    Article  PubMed  CAS  Google Scholar 

  • Pujol, C. & Bliska, J. B. (2005) Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin Immunol, 114, 216–26.

    Article  PubMed  CAS  Google Scholar 

  • Pujol, C., Grabenstein, J. P., Perry, R. D. & Bliska, J. B. (2005) Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc Natl Acad Sci U S A, 102, 12909–14.

    Article  PubMed  CAS  Google Scholar 

  • Pujol, C., Klein, K. A., Romanov, G. A., Palmer, L. E., Cirota, C., Zhao, Z. & Bliska, J. B. (2009) Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun.

    Google Scholar 

  • Rohde, K., Yates, R. M., Purdy, G. E. & Russell, D. G. (2007) Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev, 219, 37–54.

    Article  PubMed  CAS  Google Scholar 

  • Runco, L. M., Myrczek, S., Bliska, J. B. & Thanassi, D. G. (2008) Biogenesis of the F1 Capsule and Analysis of the Ultrastructure of Yersinia pestis. J Bacteriol, Submitted.

    Google Scholar 

  • Sebbane, F., Gardner, D., Long, D., Gowen, B. B. & Hinnebusch, B. J. (2005) Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol, 166, 1427–39.

    Article  PubMed  Google Scholar 

  • Shenoy, A. R., Kim, B. H., Choi, H. P., Matsuzawa, T., Tiwari, S. & Macmicking, J. D. (2007) Emerging themes in IFN-gamma-induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology, 212, 771–84.

    Article  PubMed  CAS  Google Scholar 

  • Smiley, S. T. (2008) Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines, 7, 209–21.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, T. H. & Swanson, J. A. (1994) Measurement of phagosome-lysosome fusion and phagosomal pH. Methods Enzymol, 236, 147–60.

    Article  PubMed  CAS  Google Scholar 

  • Straley, S. C. & Harmon, P. A. (1984a) Growth in mouse peritoneal macrophages of Yersinia pestis lacking established virulence determinants. Infect. Immun., 45, 649–54.

    PubMed  CAS  Google Scholar 

  • Straley, S. C. & Harmon, P. A. (1984b) Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages. Infect. Immun., 45, 655–59.

    PubMed  CAS  Google Scholar 

  • Titball, R. W. & Williamson, E. D. (2004) Yersinia pestis (plague) vaccines. Expert Opin Biol Ther, 4, 965–73.

    Article  PubMed  CAS  Google Scholar 

  • Tsukano, H., Kura, F., Inoue, S., Sato, S., Izumiya, H., Yasuda, T. & Watanabe, H. (1999) Yersinia pseudotuberculosis blocks the phagosomal acidification of B10.A mouse macrophages through the inhibition of vacuolar H+-ATPase activity. Microb. Pathog., 27, 253–63.

    Article  PubMed  CAS  Google Scholar 

  • Vergne, I., Chua, J., Singh, S. B. & Deretic, V. (2004) Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol, 20, 367–94.

    Article  PubMed  CAS  Google Scholar 

  • Viboud, G. I. & Bliska, J. B. (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol, 59, 69–89.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, O. V., Botelho, R. J. & Grinstein, S. (2002) Phagosome maturation: aging gracefully. Biochem. J., 366, 689–704.

    PubMed  CAS  Google Scholar 

  • Welkos, S., Pitt, M. L. M., Martinez, M., Friedlander, A., Vogel, P. & Tammariello, R. (2002) Determination of the virulence of the pigmentation-deficient and pigmentation-/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine, 20, 2206–14.

    Article  PubMed  CAS  Google Scholar 

  • Welkos, S. L., Friedlander, A. M. & Davis, K. J. (1997) Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb. Pathog., 23, 211–23.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z., Thackray, L. B., Miller, B. C., Lynn, T. M., Becker, M. M., Ward, E., Mizushima, N. N., Denison, M. R. & Virgin, H. W. T. (2007) Coronavirus replication does not require the autophagy gene ATG5. Autophagy, 3, 581–5.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Kate Klein for permission to cite unpublished data. The work summarized in this chapter was supported by grants from the NIH awarded to J.B.B. (PO1-AI055621 and the Northeast Biodefense Center U54-AI057158-Lipkin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Bliska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bliska, J.B. (2010). Survival and Trafficking of Yersinia pestis in Non-acidified Phagosomes in Murine Macrophages. In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_4

Download citation

Publish with us

Policies and ethics