Skip to main content

Inhibitors of Innate Immunity from Vaccinia Virus

  • Conference paper
  • First Online:
The Challenge of Highly Pathogenic Microorganisms
  • 707 Accesses

Abstract

Vaccinia virus (VACV) is an enigma, for it is the only vaccine to have eradicated a human disease, smallpox, and yet its origin and natural host remain unknown. After the eradication of smallpox, VACV has continued to be studied intensively because of the potential use of recombinant VACVs as vaccines against other infectious diseases, and because it is an excellent model for studying virus-host interactions. This short article considers some of the strategies used by VACV to suppress the host innate immune response to infection. These strategies include proteins that are secreted from infected cells to bind complement factors, cytokines, chemokines or interferons, and intracellular proteins that can synthesize steroid hormones, or block apoptosis or innate signalling pathways leading to production of inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado, B., Selmes, I. P. & Smith, G. L. (1992) Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol, 73, 2887–902.

    Article  PubMed  CAS  Google Scholar 

  • Alcami, A. & Smith, G. L. (1992) A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell, 71, 153–67.

    Article  PubMed  CAS  Google Scholar 

  • Alcami, A. & Smith, G. L. (1996) A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci USA, 93, 11029–34.

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi, M., Zhai, D., Jin, C., Aleshin, A. E., Stec, B., Reed, J. C. & Liddington, R. C. (2007) Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci, 16, 118–24.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, N., Symons, J. A., Tscharke, D. C. & Smith, G. L. (2002) The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol, 83, 1965–76.

    PubMed  CAS  Google Scholar 

  • Blanchard, T. J., Alcami, A., Andrea, P. & Smith, G. L. (1998) Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol, 79, 1159–67.

    PubMed  CAS  Google Scholar 

  • Chen, R. A., Jacobs, N. & Smith, G. L. (2006) Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol, 87, 1451–8.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R. A., Ryzhakov, G., Cooray, S., Randow, F. & Smith, G. L. (2008) Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog, 4, e22.

    Article  PubMed  Google Scholar 

  • Clark, R. H., Kenyon, J. C., Bartlett, N. W., Tscharke, D. C. & Smith, G. L. (2006) Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol, 87, 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Cooray, S., Bahar, M. W., Abrescia, N. G., Mcvey, C. E., Bartlett, N. W., Chen, R. A., Stuart, D. I., Grimes, J. M. & Smith, G. L. (2007) Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol, 88, 1656–66.

    Article  PubMed  CAS  Google Scholar 

  • Diperna, G., Stack, J., Bowie, A. G., Boyd, A., Kotwal, G., Zhang, Z., Arvikar, S., Latz, E., Fitzgerald, K. A. & Marshall, W. L. (2004) Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem, 279, 36570–8.

    Article  PubMed  CAS  Google Scholar 

  • Downie, A. W. (1939) Immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br. J. Exp. Pathol., 20, 158–76.

    Google Scholar 

  • Esposito, J. J., Sammons, S. A., Frace, A. M., Osborne, J. D., Olsen-Rasmussen, M., Zhang, M., Govil, D., Damon, I. K., Kline, R., Laker, M., Li, Y., Smith, G. L., Meyer, H., Leduc, J. W. & Wohlhueter, R. M. (2006) Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science, 313, 807–12.

    Article  PubMed  Google Scholar 

  • Fenner, F., Anderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. (1988) Smallpox and Its Eradication, World Health Organisation, Geneva.

    Google Scholar 

  • Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P. & Paoletti, E. (1990) The complete DNA sequence of vaccinia virus. Virology, 179, 247–66, 517–63.

    Article  PubMed  CAS  Google Scholar 

  • Graham, S. C., Bahar, M. W., Cooray, S., Chen, R. A. J., Whalen, D. M., Abrescia, N. G. A., Alderton, D., Owens, R. J., Stuart, D. I., Smith, G. L. & Grimes, J. M. (2008) Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-kappa B rather than apoptosis. Plos Pathogens, 4, e100128.

    Google Scholar 

  • Hashizume, S., Yoshizawa, H., Morita, M. & Suzuki, K. (1985) Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain. In Quinnan, G. V. (ed.), Vaccinia viruses as vectors for vaccine antigens. Elsevier, New York.

    Google Scholar 

  • Jenner, E. (1798) An Enquiry into the Causes and Effects of Variolae Vaccinae, a Disease Discovered in some Western Countries of England, particularly Gloucestershire, and known by the Name of Cow Pox., London, Reprinted by Cassell, 1896.

    Google Scholar 

  • Kalverda, A. P., Thompson, G. S., Vogel, A., Schroder, M., Bowie, A. G., Khan, A. R. & Homans, S. W. (2009) Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol, 385, 843–53.

    Article  PubMed  CAS  Google Scholar 

  • Kotwal, G. J., Hugin, A. W. & Moss, B. (1989) Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology, 171, 579–87.

    Article  PubMed  CAS  Google Scholar 

  • Kotwal, G. J. & Moss, B. (1988) Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology, 167, 524–37.

    PubMed  CAS  Google Scholar 

  • Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C. & Colman, P. M. (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ, 15, 1564–71.

    Article  PubMed  CAS  Google Scholar 

  • Lane, J. M., Ruben, F. L., Neff, J. M. & Millar, J. D. (1969) Complications of smallpox vaccination, 1968. National surveillance in the United States. N Engl J Med, 281, 1201–8.

    Article  PubMed  CAS  Google Scholar 

  • Mackett, M. & Archard, L. C. (1979) Conservation and variation in Orthopoxvirus genome structure. J Gen Virol, 45, 683–701.

    Article  PubMed  CAS  Google Scholar 

  • Mackett, M., Smith, G. L. & Moss, B. (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci USA, 79, 7415–9.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J. B. & Smith, G. L. (1992) Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J, 11, 3490.

    PubMed  CAS  Google Scholar 

  • Moss, B. (2007) Poxviridae: the viruses and their replicaton. In Knipe, D. M. (ed.), Fields virology. 5th ed., Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  • Moss, B., Winters, E. & Cooper, J. A. (1981) Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. J Virol, 40, 387–95.

    PubMed  CAS  Google Scholar 

  • Panicali, D., Davis, S. W., Mercer, S. R. & Paoletti, E. (1981) Two major DNA variants present in serially propagated stocks of the WR strain of vaccinia virus. J Virol, 37, 1000–10.

    PubMed  CAS  Google Scholar 

  • Panicali, D., Davis, S. W., Weinberg, R. L. & Paoletti, E. (1983) Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci USA, 80, 5364–8.

    Article  PubMed  CAS  Google Scholar 

  • Panicali, D. & Paoletti, E. (1982) Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci USA, 79, 4927–31.

    Article  PubMed  CAS  Google Scholar 

  • Perkus, M. E., Piccini, A., lipinskas, B. R. & Paoletti, E. (1985) Recombinant vaccinia virus: immunization against multiple pathogens. Science, 229, 981–4.

    Article  PubMed  CAS  Google Scholar 

  • Reading, P. C., Moore, J. B. & Smith, G. L. (2003) Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J. Exp. Med., 197, 1269–78.

    Article  PubMed  CAS  Google Scholar 

  • Seet, B. T., Johnston, J. B., Brunetti, C. R., Barrett, J. W., Everett, H., Cameron, C., Sypula, J., Nazarian, S. H., Lucas, A. & Mcfadden, G. (2003) Poxviruses and immune evasion. Annu Rev Immunol, 21, 377–423.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L. (1999) Vaccinia virus immune evasion. Immunol. Lett, 65, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L. & Chan, Y. S. (1991) Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J Gen Virol, 72, 511–8.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L., Chan, Y. S. & Howard, S. T. (1991) Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol, 72, 1349–76.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L., Mackett, M. & Moss, B. (1983a) Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature, 302, 490–5.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L. & Moss, B. (1983) Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene, 25, 21–8.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. L., Murphy, B. R. & Moss, B. (1983b) Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc Natl Acad Sci USA, 80, 7155–9.

    Article  PubMed  CAS  Google Scholar 

  • Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M. & Vanslyke, J. (1992) Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell, 71, 145–52.

    Article  PubMed  CAS  Google Scholar 

  • Sroller, V., Kutinova, L., Nemeckova, S., Simonova, V. & Vonka, V. (1998) Effect of 3-beta-hydroxysteroid dehydrogenase gene deletion on virulence and immunogenicity of different vaccinia viruses and their recombinants. Arch Virol, 143, 1311–20.

    Article  PubMed  CAS  Google Scholar 

  • Staib, C., Kisling, S., Erfle, V. & Sutter, G. (2005) Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol, 86, 1997–2006.

    Article  PubMed  CAS  Google Scholar 

  • Stickl, H. & Hochstein-Mintzel, V. (1971) [Intracutaneous smallpox vaccination with a weak pathogenic vaccinia virus (“MVA virus”)]. Munch Med Wochenschr, 113, 1149–53.

    PubMed  CAS  Google Scholar 

  • Tscharke, D. C., Reading, P. C. & Smith, G. L. (2002) Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol, 83, 1977–86.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is most grateful to the conference organisers for the kind invitation to visit Israel and attend the 46th Oholo Conference. The work in the author’s laboratory has been supported by grants from the Wellcome Trust, the Medical Research Council of UK. GLS is a Wellcome Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey L. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Smith, G.L. (2010). Inhibitors of Innate Immunity from Vaccinia Virus. In: Shafferman, A., Ordentlich, A., Velan, B. (eds) The Challenge of Highly Pathogenic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9054-6_13

Download citation

Publish with us

Policies and ethics