Skip to main content

Structural Profile and Development of the Accretionary Complex in the Nankai Trough, Southwest Japan: Results of Submersible Studies

  • Chapter
  • First Online:
Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin

Abstract

We conducted seafloor geological mapping using the submersible “SHINKAI 6500” along the Shionomisaki submarine canyon, off Kii peninsula, Southwest Japan, in order to document the distribution of outcrop-scale structures and strain in the accretionary complex of the Nankai trough. We investigated outcrops in the seaward-most part (frontal thrust zone), the landward-most part (megasplay fault zone) and an intermediate part (imbricate thrust zone) of the accretionary complex. Turbiditic sediments in the frontal thrust zone have been deformed to form an open anticline. Minor normal faults striking parallel to the trough axis developed in the crest of the anticline. As sediments were transferred into the imbricate thrust zone, both hill-size open anticlines and outcrop-scale open to tight folds developed in the turbiditic sequence. We also observed brittle thrust faults spatially associated with tight folds and development of shear fabrics such as oblique cleavages and en-echelon mineral veins. An out-of-sequence thrust, known as the megasplay fault in this region, then developed in the frontal part of the landward-most ridge composed of thick turbidite sequences. Sandstones just above the megasplay fault are cemented by carbonates. Behind the cemented zone, bifurcations of the megasplay fault are distributed in the sandstone-rich strata dipping steeply to the south. Folds with wavelength of ∼200 m developed in mudstone-rich turbidites behind the bifurcating fault zone. The cementation strengthened the frontal part of the megasplay fault zone, which in turn, acted as an indenter for the inner part of the accretionary wedge. The cemented and hardened ridge must have local controls on strain localization and development of the accretionary complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando M (1975) Source mechanisms and tectonic significance of historical earthquakes along Nankai trough, Japan. Tectonophysics 27:119–140

    Article  Google Scholar 

  • Anma R, Kawakami S, Yamamoto Y (2002) Structural profile of the Nankai accretionary prism and Calyptogena colonies along the Shionomisaki submarine canyon: results of “SHINKAI” 6K#522 and #579 dives. JAMSTEC J Deep Sea Res 20:59–75

    Google Scholar 

  • Anma R, Ogawa Y, Kawamura K, Moore GF, Sasaki T, Kawakami S, Hirano S, Ohta T, Endo R, Michiguchi Y, YK05-08 Shipboard Science Party (2010) Structures, textures, physical properties of accretionary prism sediments and fluid flow near the Splay Fault zone in the Nankai trough, off Kii peninsula. J Geol Soc Jpn 116:637–660 (in Japanese with English abstract)

    Google Scholar 

  • Aoki Y, Tamano T, Kato S (1982) Detailed structure of the Nankai trough from migrated seismic sections: studies in continental margin geology. AAPG Mem 34:309–322

    Google Scholar 

  • Arai T, Tsukahara H, Morikiyo T (2003) Sealing process with calcite in the Nojima active fault zone revealed from isotope analysis of calcite. J Geogr 112:915–925

    Google Scholar 

  • Ashi J, Taira A (1992) Structures of the Nankai accretionary prism as revealed from IZANAGI sidescan imagery and multichannel seismic reflection profiling. Isl Arc 1:104–115

    Article  Google Scholar 

  • Ashi J, Kuramoto S, Morita S, Tsunogai U, Goto S, Kojima S, Okamoto T, Ishimura T, Ijiri A, Toki T, Kudo S, Asai S, Utsumi M (2002a) Structure and cold seep of the Nankai accretionary prism off Kumano – outline of the off Kumano survey during YK01-04 Leg 2 Cruise. JAMSTEC J Deep Sea Res 20:1–8

    Google Scholar 

  • Ashi J, Tokuyama H, Taira A (2002b) Distribution of Methane hydrate BSRs and its implication for the prism growth in the Nankai trough. Mar Geol 187:177–191

    Article  Google Scholar 

  • Baba T, Cummins PR (2005) Contiguous rupture areas of two Nankai trough earthquakes revealed by high-resolution tsunami waveform inversion. Geophys Res Lett 32:L08305. doi:10.1029/2004GL022320

    Article  Google Scholar 

  • Baba T, Tanioka Y, Cummins PR, Uhira K (2002) The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model. Phys Earth Planet Inter 132:59–73

    Article  Google Scholar 

  • Baba T, Cummins PR, Hori T, Kaneda Y (2006) High precision slip distribution of the 1944 Tonankai earthquake inferred from tsunami waveforms: possible slip on a splay fault. Tectonophysics 426:119–134

    Article  Google Scholar 

  • Bangs NL, Shipley TH, Gulick SPS, Moore GF, Kuramoto S, Nakamura Y (2004) Evolution of the Nankai trough decollement from the trench into the seismogenic zone: inferences from three-dimensional seismic reflection imaging. Geology 32:273–276

    Article  Google Scholar 

  • Bangs NL, Gulick SPS, Shipley TH (2006) Seamount subduction erosion in the Nankai trough and its potential impact on the seismogenic zone. Geology 34:701–704

    Article  Google Scholar 

  • Bangs NLB, Moore GF, Gulick SPS, Pangborn EM, Tobin HJ, Kuramoto S, Taira A (2009) Broad, weak regions of the Nankai Megathrust and implications for shallow coseismic slip. Earth Planet Sci Lett 284:44–49

    Article  Google Scholar 

  • Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. Rev Mineral Geochem 43:415–467

    Article  Google Scholar 

  • Colwell F, Matsumoto R, Reed D (2004) A review of the gas hydrates, geology, and biology of the Nankai trough. Chem Geol 205:391–404

    Article  Google Scholar 

  • Cummins PR, Baba T, Kodaira S, Kaneda Y (2002) The 1946 Nankai earthquake and segmentation of the Nankai trough. Phys Earth Planet Inter 132:75–87

    Article  Google Scholar 

  • Davis EE, Becker K, Wang K, Obara K, Ito Y, Kinoshita M (2006) A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate. Earth Planet Sci Lett 242:73–84

    Article  Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the Western Pacific. J Geophys Res 77:4432–4460

    Article  Google Scholar 

  • Gradstein F, Ogg J, Smith A (2004) A geologic time scale. Cambridge University Press, Cambridge, 589 p

    Book  Google Scholar 

  • Henry P, Lallemant S, Nakamura K, Tsunogai U, Mazzotti S, Kobayashi K (2002) Surface expression of fluid venting at the toe of the Nankai wedge and implications fro flow paths. Mar Geol 187:119–143

    Article  Google Scholar 

  • Hirano S, Yamaguchi A, Ogawa Y, Anma R, Moore GF, Dilek Y, Kawamura K, YK05-08 Leg2 Shipboard Science Party (2006) Mode of occurrence and stable isotopes of carbonate cements and veins distributed nearby active faults in accretionary prisms (translated from Japanese abstract). JAMSTEC Blue Earth symposium, Abstracts PS82

    Google Scholar 

  • Hirono T (2005) The role of dewatering in the progressive deformation of a sandy accretionary wedge: constraints from direct imagings of fluid flow and void structure. Tectonophysics 397:261–280

    Article  Google Scholar 

  • Hori T, Kato N, Hirahara K, Baba T, Kaneda Y (2004) A numerical simulation of earthquake cycles along the Nankai trough in southwest Japan: lateral variation in frictional property due to the slab geometry controls the nucleation position. Earth Planet Sci Lett 228:215–226

    Article  Google Scholar 

  • Ichinose GA, Thio HK, Somerville PG, Sato T, Ishii T (2003) Rupture process of the 1944 Tonankai earthquake (Ms 8.1) from the inversion of teleseismic and regional seismograms. J Geophys Res 108(B10):ESE 1–ESE 13. doi:10.1029/2003JB002393

    Article  Google Scholar 

  • Ito Y, Obara K (2006) Dynamic deformation of the accretionary prism excites very low frequency earthquakes. Geophys Res Lett 33:L02311. doi:10.1029/2005GL025270

    Article  Google Scholar 

  • Kamikuri S, Nishi H, Motoyama I, Saito S (2004) Middle Miocene to Pleistocene radiolarian biostratigraphy in the Northwest Pacific Ocean, ODP Leg 186. Isl Arc 13:191–226

    Article  Google Scholar 

  • Kato S, Sato T, Sakurai M (1983) Multi-channel seismic reflection survey in the Nankai, Suruga and Sagami troughs. Rep Hydrogr Res 18:1–23

    Google Scholar 

  • Kawamura K, Ogawa Y, Fujikura K, Hattori M, Machiyama H, Yamamoto T, Iwai M, Hirono T (1999) What did the “KAIKO” watch? – Detail topography and geologic structures at the mouth of Tenryu canyon. JAMSTEC J Deep Sea Res 14:379–388

    Google Scholar 

  • Kawamura K, Ogawa Y, Anma R, Yokoyama S, Kawakami S, Dilek Y, Moore GF, Hirano S, Yamaguchi A, Sasaki T, YK05–08 Leg 2 and YK06–02 Shipboard Scientific Parties, (2009) Structural architecture and active deformation of the Nankai Accretionary Prism, Japan: submersible survey results from the Tenryu Submarine Canyon. Geol Soc Am Bull 121:1629–1646

    Article  Google Scholar 

  • Kido Y, Fujiwara T (2004) Regional variation of magnetization of oceanic crust subducting beneath the Nankai trough. Geochem Geophys Geosys 5:Q03002. doi:10.1029/2003GC000649

    Article  Google Scholar 

  • Kimura G, Kitamura Y, Hashimoto Y, Yamaguchi A, Shibata T, Ujiie K, Okamoto S (2007) Transition of accretionary wedge structures around the up-dip limit of the seismogenic subduction zone. Earth Planet Sci Lett 255:471–484

    Article  Google Scholar 

  • Kinoshita M, Tobin H, Ashi J, Kimura G, Lallemant S, Screaton EJ, Curewitz D, Masago H, Moe KT, The Expedition 314/315/316 Scientists (2009) Proceedings of the IODP, vol 314/315/316. Integrated Ocean Drilling Program Management International, Washington, DC. doi:10.2204/iodp.proc.314315316.2009

    Google Scholar 

  • Kobayashi K (2002) Tectonic significance of the cold seepage zones in the eastern Nankai accretionary wedge – an outcome of the 15 year’s KAIKO projects. Mar Geol 187:3–30

    Article  Google Scholar 

  • Kodaira S, Takahashi N, Park JO, Mochizuki K, Shinohara M, Kimura S (2000a) Western Nankai trough seismogenic zone: results from a wide-angle ocean bottom seismic survey. J Geophys Res 105:5887–5905

    Article  Google Scholar 

  • Kodaira S, Takahashi N, Nakanishi A, Miura S, Kaneda Y (2000b) Subducted seamount images in the rupture zone of the 1946 Nankaido Earthquake. Science 289:104–106

    Article  Google Scholar 

  • Kodaira S, Kurashimo E, Park JO, Takahashi N, Nakanishi A, Miura S, Iwasaki T, Hirata N, Ito A, Kaneda Y (2002) Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone. Geophys J Int 149:815–835

    Article  Google Scholar 

  • Kodaira S, Iidaka T, Kato A, Park JO, Iwasaki T, Kaneda Y (2004) High pore fluid pressure may cause silent slip in the Nankai trough. Science 304:1295–1298

    Article  Google Scholar 

  • Kodaira S, Hori T, Ito A, Miura S, Fujie G, Park JO, Baba T, Sakaguchi H, Kaneda Y (2006) A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation. J Geophys Res 111:B09301. doi:10.1029/2005JB004030

    Article  Google Scholar 

  • Kulm LVD, Suess E (1990) Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. J Geophys Res 95:8899–8915

    Article  Google Scholar 

  • Kuramoto S, Taira A, Bangs NL, Shipley TH, Moore GF, EW99-07, -08 Shipboard Scientific Parties (2000) Seismogenic zone in the Nankai accretionary wedges: general summary of Japan-U.S. collaborative 3-D seismic investigation. J Geogr 109:531–539, in Japanese

    Google Scholar 

  • Le Pichon X, Iiyama T, Boulegue J, Chavet J, Faure M, Kano K, Lallement S, Okada H, Rangin C, Taira A, Urabe T, Uyeda S (1987a) Nankai trough and Zenisu Ridge: a deep-sea submersible survey. Earth Planet Sci Lett 83:285–299

    Article  Google Scholar 

  • Le Pichon X, Iiyama T, Chamley H, Charvet J, Faure M, Fujimoto H, Furuta T, Ida Y, Kagami H, Lallemant S, Leggett J, Murata A, Okada H, Rangin C, Renard V, Taira A, Tokuyama H (1987b) The eastern and western ends of Nankai trough: results of box 5 and box 7 Kaiko survey. Earth Planet Sci Lett 83:199–213

    Article  Google Scholar 

  • Le Pichon X, Kobayashi K, Crew Kaiko-Nankai Scientific (1992) Fluid venting activity within the eastern Nankai trough accretionary wedge: a summary of the 1989 Kaiko-Nankai results. Earth Planet Sci Lett 109:303–318

    Article  Google Scholar 

  • Le Pichon X, Lallemant S, Tokuyama H, Thoue F, Huchon P, Henry P (1996) Structure and evolution of the backstop in the eastern Nankai trough area (Japan): implications for the soon-to-come Tokai earthquake. Isl Arc 5:440–454

    Article  Google Scholar 

  • Leggett J, Aoki Y, Toba T (1985) Transition from frontal accretion to underplating in a part of the Nankai trough accretionary complex of Shikoku (SW Japan) and extensional features on the lower trench slope. Mar Petrol Geol 2:131–141

    Article  Google Scholar 

  • Maltman A, Byrne T, Karig DE, Lallemant S, Knipe R, Prior D (1993) Deformation structures at Site 808, Nankai accretionary prism, Japan. In: Hill IA, Taira A, Firth JV et al (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 131. ODP, College Station, pp 123–133

    Google Scholar 

  • Martin KM, Gulick SPS, Bangs NLB, Moore GF, Ashi J, Park JO, Kuramoto S, Taira A (2010) Possible strain partitioning structure between the Kumano Forearc Basin and the slope of the Nankai trough accretionary prism. Geochem Geophys Geosyst. doi:10.1029/2009GC002668

    Google Scholar 

  • Moore GF, Shipley T, Karig D, Taira A, Tokuyama H, Kuramoto S, Suyehiro K (1990) Structural geometry at the toe of the Nankai accretionary prism from MCS and ESP data. J Geophys Res 95:8753–8765

    Article  Google Scholar 

  • Moore GF, Taira A, Klaus A, Becker L, Boeckel B, Cragg BA, Dean A, Fergusson CL, Henry P, Hirano S, Hisamitsu T, Hunze S, Kastner M, Maltman AJ, Morgan JK, Murakami Y, Saffer DM, Sanchez-Gomez M, Screaton EJ, Smith DC, Spivack AJ, Steurer J, Tobin HJ, Ujiie K, Underwood M, Wilson M (2001) New insights into deformation and fluid flow processes in the Nankai trough accretionary prism: results of Ocean Drilling Program Leg 190. Geochem Geophys Geosyst 2:1058. doi:10.1029/2001GC00166

    Article  Google Scholar 

  • Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three-dimensional splay fault geometry and implications for tsunami generation. Science 318:1128–1131

    Article  Google Scholar 

  • Morgan JK, Ask MVS (2004) Consolidation state and strength of underthrust sediments and evolution of the décollement at the Nankai accretionary margin: Result of uniaxial reconsolidation experiments. J Geophys Res 109. doi:10.1029/2002JB002335

    Google Scholar 

  • Morgan JK, Karig DE (1993) Ductile strains in clay-rich sediments from hole 808C: preliminary results using X-ray pole figure goniometry. In: Hill IA, Taira A, Firth JV et al (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 131. ODP, College Station, pp 141–155

    Google Scholar 

  • Motoyama I, Maruyama T (1998) Neogene diatom and radioralian biochronology for the middle-to-high latitudes of the Northwest Pacific region: calibration to the Cande and Kent’s geomagnetic polarity time scales (CK92 and CK95). J Geol Soc Jpn 104:171–183

    Google Scholar 

  • Motoyama I, Niitsuma N, Maruyama T, Hayashi H, Kamikuri S, Shiono M, Kanamatsu T, Aoki K, Morishita C, Hagino K, Nishi H, Oda M (2004) Middle Miocene to Pleistocene magneto-biostratigraphy of ODP Sites 1150 and 1151, northwest Pacific: sedimentation rate and updated regional geological timescale. Isl Arc 13:289–305

    Article  Google Scholar 

  • Nakanishi A, Shiobara H, Hino R, Kasahara J, Suyehiro K, Shimamura H (2002a) Crustal structure around the eastern end of coseismic rupture zone of the 1944 Tonankai earthquake. Tectonophysics 354:257–275

    Article  Google Scholar 

  • Nakanishi A, Shiobara H, Hino R, Mochizuki K, Sato T, Kasahara J, Takahashi N, Suyehiro K, Tokuyama H, Segawa J, Shinohara M, Shimamura H (2002b) Deep crustal structure of the eastern Nankai trough and Zenisu Ridge by dense airgun-OBS seismic profiling. Mar Geol 187:47–62

    Article  Google Scholar 

  • Nakanishi A, Kodaira S, Park JO, Kaneda Y (2002c) Deformable backstop as seaward end of coseismic slip in the Nankai trough seismogenic zone. Earth Planet Sci Lett 203:255–263

    Article  Google Scholar 

  • Nakanishi A, Kodaira S, Miura S, Ito A, Sato T, Park JO, Kido Y, Kaneda Y (2008) Detailed structural image around splay-fault branching in the Nankai subduction seismogenic zone: results from a high-density ocean bottom seismic survey. J Geophys Res 113:B03105. doi:10.1029/2007JB004974, 2008

    Article  Google Scholar 

  • Obara K, Ito Y (2005) Very low frequency earthquakes excited by the 2004 off the Kii peninsula earthquakes: a dynamic deformation process in the large accretionary prism. Earth Planet Space 57:321–326

    Google Scholar 

  • Ogawa Y, Fujioka K, Fujikura K, Iwabuchi Y (1996) En-echelon patterns of Calyptogena colonies in the Japan Trench. Geology 24:807–810

    Article  Google Scholar 

  • Park JO, Tsuru T, Kodaira S, Cummins PR, Kaneda Y (2002a) Splay fault branching along the Nankai subduction zone. Science 297:1157–1160

    Article  Google Scholar 

  • Park JO, Tsuru T, Takahashi N, Hori T, Kodaira S, Nakanishi A, Miura S, Kaneda Y (2002b) A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: implication for underplating and interseismic shear stress release. J Geophys Res 107:2061. doi:10.1029/2001JB000262.2002

    Article  Google Scholar 

  • Park JO, Fujie G, Wijerathne L, Hori T, Kodaira S, Fukao Y, Moore GF, Bangs NL, Kuramoto S, Taira A (2010) A low-velocity zone with weak reflectivity along the Nankai subduction zone. Geology 38:283–286

    Article  Google Scholar 

  • Pickering TK, Taira A (1994) Tectonosedimentation: with examples from the tertiary – recent of Southeast Japan. In: Hancock PL (ed) Continental deformation. Pergamon, Oxford, pp 320–354

    Google Scholar 

  • Pili E, Poitrasson F, Gratier J-P (2002) Carbon-oxygen isotope and trace element constrains on how fluids percolate faulted limestones from the San Andreas Fault system: partitionaing of fluid sources and pathways. Chem Geol 190:231–250

    Article  Google Scholar 

  • Sakai H, Gamo T, Ogawa Y, Boulegue J (1992) Stable isotopic ratios and origins of the carbonates associated with cold seepage at the eastern Nankai trough. Earth Planet Sci Lett 109:391–404

    Article  Google Scholar 

  • Sanfilippo A, Nigrini C (1998) Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. Mar Micropaleontol 33:109–156

    Article  Google Scholar 

  • Seno T, Stein S, Gripp AE (1993) A model for the motion of the Philippine Sea Plate consistent with Nuvel I and geological data. J Geophys Res 98:17941–17948

    Article  Google Scholar 

  • Strasser M, Moore GF, Kimura G, Kitamura Y, Kopf AJ, Lallemant S, Park JO, Screaton EJ, Su X, Underwood MB, Zhao X (2009) Origin and evolution of a splay fault in the Nankai accretionary wedge. Nat Geosci. doi:10.1038/NGEO609

    Google Scholar 

  • Taira A, Hill I, Firth J, Berner U, Bruckmann W, Byrne T, Chabernaud T, Fisher A, Foucher J-P, Gamo T, Gieskes J, Hyndman R, Karig D, Kastner M, Kato Y, Lallemant S, Lu R, Maltman A, Moore G, Moran K, Olaffson G, Owens W, Pickering K, Siena F, Taylor E, Underwood M, Wilkinson C, Yamano M, Zhang J (1992) Sediment deformation and hydrogeology of the Nankai trough accretionary prism: synthesis of shipboard results of ODP Leg 131. Earth Planet Sci Lett 109:431–450

    Article  Google Scholar 

  • Takahashi N, Kodaira S, Park JO, Diebold J (2003) Heterogeneous structure of western Nankai seismogenic zone deduced by multichannel reflection data and wide-angle seismic data. Tectonophysics 364:167–190

    Article  Google Scholar 

  • Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on hydrate ridge – unique microbially-mediated carbonate build-ups growing into the water column. Paleogeogr Paleoclimatol Paleoecol 227:67–85

    Article  Google Scholar 

  • Tobin HJ, Kinoshita M (2006) NanTroSEIZE: the IODP Nankai trough seismogenic zone experiment. Sci Drill 2:23–27

    Google Scholar 

  • Ujiie K, Hisamitsu T, Taira A (2003) Deformation and fluid pressure variation during initiation and evolution of the plate boundary decollement zone in the Nankai accretionary prism. J Geophys Res 108. doi:10.1029/2002JB002314

    Google Scholar 

  • Ujiie K, Maltman AJ, Sanchez-Gomez M (2004) Origin of deformation bands in argillaceous sediments at the toe of the Nankai accretionary prism, southwest Japan. J Struct Geol 26:221–231

    Article  Google Scholar 

  • Yamaguchi A, Ujiie K, Kimura G, Matsumoto R (2004) Carbon and oxygen isotopic composition of vein calcite in the Mugi melange, the Shimanto belt, Japan. Japan Geoscience Union Meeting 2004, Abstracts J036-015

    Google Scholar 

  • Yamaguchi A, Kimura G, Kusaba Y, Sibata T, Yamaguchi H, Okamoto S (2007) Fluid conduit system along the Nobeoka thrust, Shimanto belt: derived from carbon and oxygen isotopic compositions of carbonate veins. 114th Annual Meeting of the Geological Society of Japan, Abstracts O-146

    Google Scholar 

Download references

Acknowledgements

Our thanks go to the captain and crew of the R/V Yokosuka, and the commander and pilots of the “SHINKAI 6500” operation team. Our thanks also go to the Shipboard Science Parties of YK99-09, YK00-08, YK05-08 and YK06-02 cruises for their assistance and discussion. We appreciate the support of JAMSTEC during this study. We thank to Prof. Timothy Kusky (China University of Geosciences) and Dr. Andrea Festa (University of Torino) for their critical reviews and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Anma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anma, R. et al. (2011). Structural Profile and Development of the Accretionary Complex in the Nankai Trough, Southwest Japan: Results of Submersible Studies. In: Ogawa, Y., Anma, R., Dilek, Y. (eds) Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin. Modern Approaches in Solid Earth Sciences, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8885-7_8

Download citation

Publish with us

Policies and ethics