Skip to main content

Angiogenesis and Lymphangiogenesis in Colon Cancer Metastasis

  • Chapter
  • First Online:
Metastasis of Colorectal Cancer

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 14))

Abstract

The vascular system markedly contributes to the pathogenesis of colorectal cancer (CRC). Indeed, agents targeting angiogenesis (bevacizumab) exhibit considerable efficacy in treatment of metastatic CRC, but less so in other (adjuvant) settings. These unexpected outcomes indicate that, to make further progress, a more complete understanding is required of the relationship between the tumour cell compartment and various facets of the vasculature. Here, we review the general mechanisms involved in angiogenesis and lymphangiogenesis during formation, growth and metastatic dissemination of CRC. We discuss several levels at which blood vessel growth is regulated, namely through local growth factor networks, circulating effectors, coagulation system, microvesicles and bone marrow-derived cells, the latter acting at the systemic level. We survey the mechanisms triggering the proangiogenic state in cancer, including microenvironment and oncogenic pathways, and discuss the developments in anti-angiogenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang-2:

Angiopoietin-2

APC:

Adenomatous polyposis coli

ARNT:

Aryl hydrocarbon nuclear translocator

BECs:

Blood vessel endothelial cells

bFGF:

Basic fibroblast growth factor

BM:

Bone marrow

BMDCs:

Bone marrow-derived cells

CEPs:

Circulating endothelial progenitors

CNS:

Central nervous system

COX-2:

Cyclooxygenase2

CRC:

Colorectal cancer

CSCs:

Cancer stem cells

CSFs:

Colony stimulating factors

CXCR4:

Chemokine C-X-C motif receptor 4

Dll4-4:

Notch ligand, delta-like 4 (Dll-4)

EGF:

Epidermal growth factor

ECM:

Extracellular matrix

EPCs:

Endothelial progenitor cells

EPCR:

Endothelial protein C receptor

FGF:

Fibroblast growth factor

Flk-1:

Fetal liver kinase 1

Flt-1:

fms-related tyrosine kinase 1

Foxc2:

Forkhead box C2

GI:

Gastrointestinal

HGF:

Hepatocyte growth factor

HER-2:

Human epidermal growth factor receptor-2

HIF:

Hypoxia inducible factor

HPCs:

Hematopoietic progenitor cells

HSCs:

Hematopoietic stem cells

Id1:

DNA-binding protein inhibitor 1

IGF-1:

Insulin-like growth factor-1

IGF-1R:

Insulin-like growth factor-1 receptor

HRE:

Hypoxia responsive element

KDR:

Kinase insert domain-containing receptor

LDH:

Lactate dehydrogenase

LECs:

Lymphatic endothelial cells

LYVE-1:

Lymphatic vessel endothelial hyaluronan receptor 1

MMP:

Matrix metalloproteinase

MVD:

Microvessel density

NRP1:

Neuropilin 1

PARs:

Protease activated receptors

PDGF-B:

Platelet-derived growth factor B (PDGF-B)

PEDF:

Pigment epithelium-derived factor

PF4:

Platelet factor 4

PI3K:

Phosphatidyl inositol kinase 3

PLGF:

Placental growth factor

Prox-1:

Prospero homeobox transcription factor

SDF1:

Stromal-derived factor 1

sVEGFR:

Soluble splice isoforms of vascular endothelial growth factor receptor

TF:

Tissue factor

TICs:

Tumour initiating cells

Tie2/TEK:

Tyrosine kinase with immunoglobulin-like and EGF-like domains 2

TM:

Thrombomodulin

TSP:

Thrombospondin

TVI:

Tumour-vascular interface

UTR:

3’ untranslated region

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

VHL:

Von Hippel Lindau

References

  • Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C et al. (1999). Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 96: 8663–68.

    Article  CAS  PubMed  Google Scholar 

  • Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A et al. (2003). Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299: 247–51.

    Article  CAS  PubMed  Google Scholar 

  • Achen MG, Stacker SA (2008). Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131: 225–34.

    Article  CAS  PubMed  Google Scholar 

  • Albrektsen T, Sorensen BB, Hjorto GM, Fleckner J, Rao LV, Petersen LC (2007). Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost 5: 1588–97.

    Article  CAS  PubMed  Google Scholar 

  • Alitalo K, Carmeliet P (2002). Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–27.

    Article  CAS  PubMed  Google Scholar 

  • Alitalo K, Tammela T, Petrova TV (2005). Lymphangiogenesis in development and human disease. Nature 438: 946–53.

    Article  CAS  PubMed  Google Scholar 

  • Allegrini G, Falcone A, Fioravanti A, Barletta MT, Orlandi P, Loupakis F et al. (2008). A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients. Br J Cancer 98: 1312–19.

    Article  CAS  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009a). Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106: 3794–99.

    Article  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10: 619–24.

    Article  CAS  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Rak J (2009b). Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8: 2014–18.

    Article  CAS  PubMed  Google Scholar 

  • Altinbas M, Coskun HS, Er O, Ozkan M, Eser B, Unal A et al. (2004). A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost 2: 1266–71.

    Article  CAS  PubMed  Google Scholar 

  • Ancrile B, Lim KH, Counter CM (2007). Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21: 1714–19.

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–67.

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18: 3964–72.

    Article  CAS  PubMed  Google Scholar 

  • Augustin HG, Koh GY, Thurston G, Alitalo K (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10: 165–77.

    Article  CAS  PubMed  Google Scholar 

  • Avraamides CJ, Garmy-Susini B, Varner JA (2008). Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8: 604–17.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al. (2006). Stem Cell-like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Res 66: 7843–48.

    Article  CAS  PubMed  Google Scholar 

  • Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P et al. (2003). Flt-1-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol 13: 1721–27.

    Article  CAS  PubMed  Google Scholar 

  • Belting M, Ahamed J, Ruf W (2005). Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 25: 1545–50.

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–44.

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Hanahan D (2008). Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8: 592–603.

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284: 808–12.

    Article  CAS  PubMed  Google Scholar 

  • Berra E, Pages G, Pouyssegur J (2000). MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19: 139–45.

    Article  CAS  PubMed  Google Scholar 

  • Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006). The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6: 835–45.

    Article  CAS  PubMed  Google Scholar 

  • Bocci G, Falcone A, Fioravanti A, Orlandi P, Di PA, Fanelli G et al. (2008). Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br J Cancer 98: 1619–29.

    Article  CAS  PubMed  Google Scholar 

  • Bouck N, Stellmach V, Hsu SC (1996). How tumors become angiogenic. Adv Cancer Res 69: 135–74.

    Article  CAS  PubMed  Google Scholar 

  • Boutin AT, Weidemann A, Fu Z, Mesropian L, Gradin K, Jamora C et al. (2008). Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 133: 223–34.

    Article  CAS  PubMed  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS et al. (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60: 1878–86.

    CAS  PubMed  Google Scholar 

  • Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR et al. (1993). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 53: 4727–35.

    CAS  PubMed  Google Scholar 

  • Broxterman HJ, Lankelma J, Hoekman K (2003). Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist Updat 6: 111–27.

    Article  CAS  PubMed  Google Scholar 

  • Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW (2007). Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 5(Suppl 1): 246–54.

    Article  CAS  PubMed  Google Scholar 

  • Burri PH (1991). Intussusceptive microvascular growth, a new mechanism of capillary network expansion. Angiogenesis, International Symposium, St Gallen, March 13–15, 1991. Abstract: 88.

    Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H (2000). Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem 275: 6580–85.

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Tan A, Gao F, Liu L, Liao C, Mo Z (2009). A meta-analysis of randomized controlled trials comparing chemotherapy plus bevacizumab with chemotherapy alone in metastatic colorectal cancer. Int J Colorectal Dis 24: 677–85.

    Article  PubMed  Google Scholar 

  • Carmeliet P (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389–95.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2001). Biomedicine. Clotting factors build blood vessels. Science 293: 1602–4.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2005). Angiogenesis in life, disease and medicine. Nature 438: 932–36.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000). Angiogenesis in cancer and other diseases. Nature 407: 249–57.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M et al. (2001). Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575–83.

    Article  CAS  PubMed  Google Scholar 

  • Carrer A, Zacchigna S, Balani A, Pistan V, Adami A, Porcelli F et al. (2008). Expression profiling of angiogenic genes for the characterisation of colorectal carcinoma. Eur J Cancer 44: 1761–69.

    Article  CAS  PubMed  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8: 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Cascinu S, Staccioli MP, Gasparini G, Giordani P, Catalano V, Ghiselli R et al. (2000). Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer. Clin Cancer Res 6: 2803–7.

    CAS  PubMed  Google Scholar 

  • Cassano A, Bagala C, Battelli C, Schinzari G, Quirino M, Ratto C et al. (2002). Expression of vascular endothelial growth factor, mitogen-activated protein kinase and p53 in human colorectal cancer. Anticancer Res 22: 2179–84.

    CAS  PubMed  Google Scholar 

  • Choi DS, Lee JM, Park GW, Lim HW, Bang JY, Kim YK et al. (2007). Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 6: 4646–55.

    Article  CAS  PubMed  Google Scholar 

  • Coughlin SR (2000). Thrombin signalling and protease-activated receptors. Nature 407: 258–64.

    Article  CAS  PubMed  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J (2005). Endothelial cells and VEGF in vascular development. Nature 438: 937–45.

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2002). Inflammation and cancer. Nature 420: 860–67.

    Article  CAS  PubMed  Google Scholar 

  • Cueni LN, Detmar M (2008). The lymphatic system in health and disease. Lymphat Res Biol 6: 109–22.

    Article  PubMed  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–84.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Skobe M (2008). Lymphatic vessel activation in cancer. Ann N Y Acad Sci 1131: 235–41.

    Article  CAS  PubMed  Google Scholar 

  • De PM, Naldini L (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 1766: 159–66.

    Google Scholar 

  • Dejana E (2004). Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5: 261–70.

    Article  CAS  PubMed  Google Scholar 

  • del Conde, I, Shrimpton CN, Thiagarajan P, Lopez JA (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106: 1604–11.

    Article  CAS  PubMed  Google Scholar 

  • Denekamp J (1982). Endothelial cell proliferation as a novel approach to targeting tumor therapy. Br J Cancer 45: 136–39.

    Article  CAS  PubMed  Google Scholar 

  • Des GG, Uzzan B, Nicolas P, Cucherat M, Morere JF, Benamouzig R et al. (2006). Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 94: 1823–32.

    Article  CAS  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–65.

    Article  CAS  PubMed  Google Scholar 

  • Di VD, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ et al. (2009). Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69: 5601–9.

    Article  CAS  Google Scholar 

  • Dick JE (2009). Looking ahead in cancer stem cell research. Nat Biotechnol 27: 44–46.

    Article  CAS  PubMed  Google Scholar 

  • Dolo V, D’Ascenzo S, Giusti I, Millimaggi D, Taraboletti G, Pavan A (2005). Shedding of membrane vesicles by tumor and endothelial cells. Ital J Anat Embryol 110: 127–33.

    CAS  PubMed  Google Scholar 

  • Drevs J, Muller-Driver R, Wittig C, Fuxius S, Esser N, Hugenschmidt H et al. (2002). PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res 62: 4015–22.

    CAS  PubMed  Google Scholar 

  • Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML (1992). tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7: 1471–80.

    CAS  PubMed  Google Scholar 

  • Dvorak HF (2002). Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20: 4368–80.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF, Nagy JA, Dvorak AM (1991). Structure of solid tumors and their vasculature:implications for therapy with monoclonal antibodies. Cancer Cells 3: 77–85.

    CAS  PubMed  Google Scholar 

  • Dvorak FH, Rickles FR. (2006). Malignancy and hemostasis. In: Coleman RB, Marder VJ, Clowes AW, George JN, Goldhaber SZ (eds.) Hemostasis and Thrombosis, Basic Principles and Clinical Practice. Lippincott Company Williams & Wilkins: Philadelphia, PA, pp. 851–73.

    Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15: 232–39.

    Article  CAS  PubMed  Google Scholar 

  • Eliceiri BP, Cheresh DA (2001). Adhesion events in angiogenesis. Curr Opin Cell Biol 13: 563–68.

    Article  CAS  PubMed  Google Scholar 

  • Ellis LM (2004). Angiogenesis and its role in colorectal tumor and metastasis formation. Semin Oncol 31: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Rossant J (2003). Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med 13: 254–59.

    Article  CAS  PubMed  Google Scholar 

  • Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356: 125–34.

    Article  CAS  PubMed  Google Scholar 

  • Falanga A (2005). Thrombophilia in cancer. Semin Thromb Hemost 31: 104–10.

    Article  PubMed  Google Scholar 

  • Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW et al. (2005). Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24: 2647–53.

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–67.

    Article  CAS  PubMed  Google Scholar 

  • Feldman AL, Alexander HR Jr, Bartlett DL, Kranda KC, Miller MS, Costouros NG et al. (2001). A prospective analysis of plasma endostatin levels in colorectal cancer patients with liver metastases. Ann Surg Oncol 8: 741–45.

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007). Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18: 581–92.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2002). VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2005). VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3): 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–58.

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008). FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8: 942–56.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–86.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1985). Tumor angiogenesis. Adv Cancer Res 43: 175–203.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6: 273–86.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Kalluri R. (2003). Tumor angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR, Bast RC Jr, Gansler TS, Holland JF, Frei E III (eds.) Cancer Medicine. BC Decker Inc.: Hamilton, London, pp. 161–94.

    Google Scholar 

  • Fotopoulou C, duBois A, Karavas AN, Trappe R, Aminossadati B, Schmalfeldt B et al. (2008). Incidence of venous thromboembolism in patients with ovarian cancer undergoing platinum/paclitaxel-containing first-line chemotherapy: an exploratory analysis by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group. J Clin Oncol 26: 2683–89.

    Article  CAS  PubMed  Google Scholar 

  • Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009). Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16: 167–79.

    Article  CAS  PubMed  Google Scholar 

  • Francis JL, Amirkhosravi A (2002). Effect of antihemostatic agents on experimental tumor dissemination. Semin Thromb Hemost 28: 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Funaki H, Nishimura G, Harada S, Ninomiya I, Terada I, Fushida S et al. (2003). Expression of vascular endothelial growth factor D is associated with lymph node metastasis in human colorectal carcinoma. Oncology 64: 416–22.

    Article  CAS  PubMed  Google Scholar 

  • Furudoi A, Tanaka S, Haruma K, Kitadai Y, Yoshihara M, Chayama K et al. (2002). Clinical significance of vascular endothelial growth factor C expression and angiogenesis at the deepest invasive site of advanced colorectal carcinoma. Oncology 62: 157–66.

    Article  CAS  PubMed  Google Scholar 

  • Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J et al. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3: 411–23.

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008). Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319: 195–98.

    Article  CAS  PubMed  Google Scholar 

  • George ML, Tutton MG, Janssen F, Arnaout A, Abulafi AM, Eccles SA et al. (2001). VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 3: 420–27.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–77.

    Article  CAS  PubMed  Google Scholar 

  • Gesierich S, Berezovskiy I, Ryschich E, Zoller M (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66: 7083–94.

    Article  CAS  PubMed  Google Scholar 

  • Giaccia A. (2003). Genetic basis of altered responsiveness of cancer cells to their microenvironment. In: Rak J (ed.) Oncogene-Directed Therapies. Humana Press: Totowa, pp. 113–32.

    Google Scholar 

  • Gilbertson RJ, Rich JN (2007). Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7: 733–36.

    Article  CAS  PubMed  Google Scholar 

  • Gimbrone M, Leapman S, Cotran R, Folkman J (1972). Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136: 261–76.

    Article  PubMed  Google Scholar 

  • Griffin CT, Srinivasan Y, Zheng YW, Huang W, Coughlin SR (2001). A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 293: 1666–70.

    Article  CAS  PubMed  Google Scholar 

  • Grothey A, Ellis LM (2008). Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. Cancer J 14: 170–77.

    Article  CAS  PubMed  Google Scholar 

  • Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS (2000). Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 20: 7282–91.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1997). Signaling vascular morphogenesis and maintenance. Science 277: 48–50.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–64.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA et al. (2003). The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200: 183–94.

    Article  CAS  PubMed  Google Scholar 

  • Harris AL (2002). Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Hembrough TA, Swartz GM, Papathanassiu A, Vlasuk GP, Rote WE, Green SJ et al. (2003). Tissue factor/factor VIIa inhibitors block angiogenesis and tumor growth through a nonhemostatic mechanism. Cancer Res 63: 2997–3000.

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3: 411–21.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T et al. (2003). Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162: 575–86.

    Article  CAS  PubMed  Google Scholar 

  • Hoff PM, Wolff RA, Bogaard K, Waldrum S, Abbruzzese JL (2006). A Phase I study of escalating doses of the tyrosine kinase inhibitor semaxanib (SU5416) in combination with irinotecan in patients with advanced colorectal carcinoma. Jpn J Clin Oncol 36: 100–3.

    Article  PubMed  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–98.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med 1: 149–53.

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–42.

    Article  CAS  PubMed  Google Scholar 

  • Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S et al. (2008). Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111: 1227–33.

    Article  CAS  PubMed  Google Scholar 

  • Itzkowitz SH, Yio X (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287: G7–17.

    Article  CAS  PubMed  Google Scholar 

  • Iversen LH, Thorlacius-Ussing O (2003). Systemic coagulation reactivation in recurrence of colorectal cancer. Thromb Haemost 89: 726–34.

    CAS  PubMed  Google Scholar 

  • Jackson DG (2004). Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 112: 526–38.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (1990). Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 9: 253–66.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2001). Normalizing tumor vaculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med 7: 987–89.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS (2006). Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3: 24–40.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Padera TP (2002). Prevention and treatment of lymphatic metastasis by antilymphangiogenic therapy. J Natl Cancer Inst 94: 785–87.

    Article  PubMed  Google Scholar 

  • Jean GW, Shah SR (2008). Epidermal growth factor receptor monoclonal antibodies for the treatment of metastatic colorectal cancer. Pharmacotherapy 28: 742–54.

    Article  CAS  PubMed  Google Scholar 

  • Jia YT, Li ZX, He YT, Liang W, Yang HC, Ma HJ (2004). Expression of vascular endothelial growth factor-C and the relationship between lymphangiogenesis and lymphatic metastasis in colorectal cancer. World J Gastroenterol 10: 3261–63.

    CAS  PubMed  Google Scholar 

  • Jimeno A, Daw NC, Amador ML, Cusatis G, Kulesza P, Krailo M et al. (2007). Analysis of biologic surrogate markers from a Children’s Oncology Group Phase I trial of gefitinib in pediatric patients with solid tumors. Pediatr Blood Cancer 49: 352–57.

    Article  PubMed  Google Scholar 

  • Jubb AM, Oates AJ, Holden S, Koeppen H (2006). Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 6: 626–35.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG Jr (2008). The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8: 865–73.

    Article  CAS  PubMed  Google Scholar 

  • Kaio E, Tanaka S, Kitadai Y, Sumii M, Yoshihara M, Haruma K et al. (2003). Clinical significance of angiogenic factor expression at the deepest invasive site of advanced colorectal carcinoma. Oncology 64: 61–73.

    Article  CAS  PubMed  Google Scholar 

  • Kakkar AK, DeRuvo N, Chinswangwatanakul V, Tebbutt S, Williamson RC (1995). Extrinsic-pathway activation in cancer with high factor VIIa and tissue factor. Lancet 346: 1004–5.

    Article  CAS  PubMed  Google Scholar 

  • Kakkar AK, Levine MN, Kadziola Z, Lemoine NR, Low V, Patel HK et al. (2004). Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 22: 1944–48.

    Article  CAS  PubMed  Google Scholar 

  • Kalas W, Yu JL, Milsom C, Rosenfeld J, Benezra R, Bornstein P et al. (2005). Oncogenes and Angiogenesis: down-regulation of thrombospondin-1 in normal fibroblasts exposed to factors from cancer cells harboring mutant ras. Cancer Res 65: 8878–86.

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R (2003). Basement membranes: structure assembly and role in tumor angiogenesis. Nature Reviews Cancer 3: 422–33.

    Article  CAS  PubMed  Google Scholar 

  • Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006). Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442: 453–56.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko I, Tanaka S, Oka S, Kawamura T, Hiyama T, Ito M et al. (2007). Lymphatic vessel density at the site of deepest penetration as a predictor of lymph node metastasis in submucosal colorectal cancer. Dis Colon Rectum 50: 13–21.

    Article  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–27.

    Article  CAS  PubMed  Google Scholar 

  • Karin M (2005). Inflammation and cancer: the long reach of Ras. Nat Med 11: 20–21.

    Article  CAS  PubMed  Google Scholar 

  • Karpanen T, Alitalo K (2008). Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 3: 367–97.

    Article  CAS  PubMed  Google Scholar 

  • Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M et al. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61: 1786–90.

    CAS  PubMed  Google Scholar 

  • Kawakami M, Furuhata T, Kimura Y, Yamaguchi K, Hata F, Sasaki K et al. (2003). Expression analysis of vascular endothelial growth factors and their relationships to lymph node metastasis in human colorectal cancer. J Exp Clin Cancer Res 22: 229–37.

    CAS  PubMed  Google Scholar 

  • Kerbel RS (1991). Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays 13: 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS (2008). Tumor angiogenesis. N Engl J Med 358: 2039–49.

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS, Folkman J (2002). Clinical translation of angiogenesis inhibitors. Nature Reviews Cancer 2: 727–39.

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G et al. (2001). Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996). Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65: 785–90.

    Article  CAS  PubMed  Google Scholar 

  • Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC et al. (2007). Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13: 2870–75.

    Article  CAS  PubMed  Google Scholar 

  • Klement H, St CB, Milsom C, May L, Guo Q, Yu JL et al. (2007). Atherosclerosis and Vascular Aging as Modifiers of Tumor Progression, Angiogenesis, and Responsiveness to Therapy. Am J Pathol 171: 1342–51.

    Article  CAS  PubMed  Google Scholar 

  • Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V et al. (2009). Platelets actively sequester angiogenesis regulators. Blood 113: 2835–42.

    Article  CAS  PubMed  Google Scholar 

  • Klerk CP, Smorenburg SM, Otten HM, Lensing AW, Prins MH, Piovella F et al. (2005). The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 23: 2130–35.

    Article  CAS  PubMed  Google Scholar 

  • Konerding MA, Fait E, Gaumann A (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 84: 1354–62.

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E (2005). Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 22: 25–30.

    Article  CAS  PubMed  Google Scholar 

  • Kupsch P, Henning BF, Passarge K, Richly H, Wiesemann K, Hilger RA et al. (2005). Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer 5: 188–96.

    Article  PubMed  Google Scholar 

  • Kuramochi H, Hayashi K, Uchida K, Miyakura S, Shimizu D, Vallbohmer D et al. (2006). Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. Clin Cancer Res 12: 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Ladomery MR, Harper SJ, Bates DO (2007). Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 249: 133–42.

    Article  CAS  PubMed  Google Scholar 

  • Lazarus RA, Olivero AG, Eigenbrot C, Kirchhofer D (2004). Inhibitors of Tissue Factor.Factor VIIa for anticoagulant therapy. Curr Med Chem 11: 2275–90.

    Article  CAS  PubMed  Google Scholar 

  • Lee AY, Rickles FR, Julian JA, Gent M, Baker RI, Bowden C et al. (2005). Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 23: 2123–29.

    Article  CAS  PubMed  Google Scholar 

  • Lesslie DP, Summy JM, Parikh NU, Fan F, Trevino JG, Sawyer TK et al. (2006). Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer 94: 1710–17.

    CAS  PubMed  Google Scholar 

  • Lohela M, Bry M, Tammela T, Alitalo K (2009). VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21: 154–65.

    Article  CAS  PubMed  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–201.

    Article  CAS  PubMed  Google Scholar 

  • Lykke J, Nielsen HJ (2004). Haemostatic alterations in colorectal cancer: perspectives for future treatment. J Surg Oncol 88: 269–75.

    Article  PubMed  Google Scholar 

  • Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J et al. (2000). Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6: 769–75.

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Nishiguchi Y, Kang SM, Yashiro M, Onoda N, Sawada T et al. (2001). Expression of thrombospondin-1 inversely correlated with tumor vascularity and hematogenous metastasis in colon cancer. Oncol Rep 8: 763–66.

    CAS  PubMed  Google Scholar 

  • Maeda K, Yashiro M, Nishihara T, Nishiguchi Y, Sawai M, Uchima K et al. (2003). Correlation between vascular endothelial growth factor C expression and lymph node metastasis in T1 carcinoma of the colon and rectum. Surg Today 33: 736–39.

    Article  CAS  PubMed  Google Scholar 

  • Makinen T, Alitalo K (2007). Lymphangiogenesis in development and disease. Novartis Found Symp 283: 87–98.

    Article  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008). Cancer-related inflammation. Nature 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Mazure NM, Chen EY, Laderoute KR, Giaccia AJ (1997). Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras- transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90: 3322–31.

    CAS  PubMed  Google Scholar 

  • McCormack PL, Keam SJ (2008). Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs 68: 487–506.

    Article  CAS  PubMed  Google Scholar 

  • McDonald DM, Choyke PL (2003). Imaging of angiogenesis: from microscope to clinic. Nat Med 9: 713–25.

    Article  CAS  PubMed  Google Scholar 

  • Mi J, Sarraf-Yazdi S, Zhang X, Cao Y, Dewhirst MW, Kontos CD et al. (2006). A comparison of antiangiogenic therapies for the prevention of liver metastases. J Surg Res 131: 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Milsom C, Anderson GM, Weitz JI, Rak J (2007). Elevated tissue factor procoagulant activity in CD133-positive cancer cells. J Thromb Haemost 5: 2550–52.

    Article  CAS  PubMed  Google Scholar 

  • Milsom CC, Yu JL, Mackman N, Micallef J, Anderson GM, Guha A et al. (2008). Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 68: 10068–76.

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Kohgo Y, Chung DC (2007). Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13: 5670–74.

    Article  CAS  PubMed  Google Scholar 

  • Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y et al. (2005). Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 105: 4649–56.

    Article  CAS  PubMed  Google Scholar 

  • Mross K, Steinbild S, Baas F, Gmehling D, Radtke M, Voliotis D et al. (2007). Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib. Eur J Cancer 43: 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Nadal C, Maurel J, Gascon P (2007). Is there a genetic signature for liver metastasis in colorectal cancer? World J Gastroenterol 13: 5832–44.

    CAS  PubMed  Google Scholar 

  • Nakasaki T, Wada H, Shigemori C, Miki C, Gabazza EC, Nobori T et al. (2002). Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. Am J Hematol 69: 247–54.

    Article  CAS  PubMed  Google Scholar 

  • Naumov GN, MacDonald IC, Chambers AF, Groom AC (2001). Solitary cancer cells as a possible source of tumor dormancy? Sem Cancer Biol 11: 271–76.

    Article  CAS  Google Scholar 

  • Ngo CV, Picha K, McCabe F, Millar H, Tawadros R, Tam SH et al. (2007). CNTO 859, a humanized anti-tissue factor monoclonal antibody, is a potent inhibitor of breast cancer metastasis and tumor growth in xenograft models. Int J Cancer 120: 1261–67.

    Article  CAS  PubMed  Google Scholar 

  • Nierodzik ML, Karpatkin S (2006). Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10: 355–62.

    Article  CAS  PubMed  Google Scholar 

  • Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al. (2006). Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444: 1032–37.

    Article  CAS  PubMed  Google Scholar 

  • Ochiumi T, Tanaka S, Oka S, Hiyama T, Ito M, Kitadai Y et al. (2004). Clinical significance of angiopoietin-2 expression at the deepest invasive tumor site of advanced colorectal carcinoma. Int J Oncol 24: 539–47.

    CAS  PubMed  Google Scholar 

  • Ogawa M, Yamamoto H, Nagano H, Miyake Y, Sugita Y, Hata T et al. (2004). Hepatic expression of ANG2 RNA in metastatic colorectal cancer. Hepatology 39: 528–39.

    Article  CAS  PubMed  Google Scholar 

  • Onogawa S, Kitadai Y, Tanaka S, Kuwai T, Kuroda T, Chayama K (2004). Regulation of vascular endothelial growth factor (VEGF)-C and VEGF-D expression by the organ microenvironment in human colon carcinoma. Eur J Cancer 40: 1604–9.

    Article  CAS  PubMed  Google Scholar 

  • Pacilli A, Pasquinelli G (2009). Vascular wall resident progenitor cells: a review. Exp Cell Res 315: 901–14.

    Article  CAS  PubMed  Google Scholar 

  • Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y et al. (2002). Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296: 1883–86.

    Article  CAS  PubMed  Google Scholar 

  • Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15: 220–31.

    Article  CAS  PubMed  Google Scholar 

  • Paku S, Paweletz N (1991). First steps of tumor-related angiogenesis. Lab Invest 65: 334–46.

    CAS  PubMed  Google Scholar 

  • Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 110: 133–41.

    Article  CAS  PubMed  Google Scholar 

  • Parikh AA, Fan F, Liu WB, Ahmad SA, Stoeltzing O, Reinmuth N et al. (2004). Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. Am J Pathol 164: 2139–51.

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM (2001). Global cancer statistics in the year 2000. Lancet Oncol 2: 533–43.

    Article  CAS  PubMed  Google Scholar 

  • Parr C, Jiang WG (2003). Quantitative analysis of lymphangiogenic markers in human colorectal cancer. Int J Oncol 23: 533–39.

    CAS  PubMed  Google Scholar 

  • Patan S, Munn LL, Jain RK (1996). Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51: 260–72.

    Article  CAS  PubMed  Google Scholar 

  • Paweletz N, Knierim M. (1989). Tumor Related Angiogenesis. Academic Press: Orlando, FL, pp. 197–42.

    Google Scholar 

  • Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ (2006). Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 119: 1249–53.

    Article  CAS  PubMed  Google Scholar 

  • Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC et al. (2005). Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11: 261–62.

    Article  CAS  PubMed  Google Scholar 

  • Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE et al. (2002). Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21: 4593–99.

    Article  CAS  PubMed  Google Scholar 

  • Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S et al. (2000). Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80: 99–115.

    Article  CAS  PubMed  Google Scholar 

  • Pinedo HM, Verheul HM, D’Amato RJ, Folkman J (1998). Involvement of platelets in tumour angiogenesis? Lancet 352: 1775–77.

    Article  CAS  PubMed  Google Scholar 

  • Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002). Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2: 826–35.

    Article  CAS  PubMed  Google Scholar 

  • Rak J. (2009). Ras oncogenes and tumour vascular interface. Cancer Genome and Tumor Microenvironment. Springer: New York. pp. 133–65.

    Google Scholar 

  • Rak J, Filmus J, Kerbel RS (1996). Reciprocal paracrine interactions between tumor cells and endothelial cells. The “angiogenesis progression” hypothesis. Eur J Cancer 32A: 2438–50.

    Article  CAS  PubMed  Google Scholar 

  • Rak JW, Hegmann EJ, Lu C, Kerbel RS (1994). Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol 159: 245–55.

    Article  CAS  PubMed  Google Scholar 

  • Rak J, Kerbel RS (1996). Treating cancer by inhibiting angiogenesis: new hopes and potential pitfalls. Cancer Metastasis Rev 15: 231–36.

    Article  CAS  PubMed  Google Scholar 

  • Rak J, Kerbel RS (2003). Oncogenes and tumor angiogenesis. In: Rak J (ed.) Oncogene-Directed Therapies. Humana Press: Totowa, NJ, pp. 171–18.

    Google Scholar 

  • Rak J, Milsom C, Yu J (2008). Tissue factor in cancer. Curr Opin Hematol 15: 522–28.

    Article  CAS  PubMed  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L, Filmus J, Sasazuki T, Kerbel RS (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575–80.

    CAS  PubMed  Google Scholar 

  • Rak J, Mitsuhashi Y, Sheehan C, Tamir A, Viloria-Petit A, Filmus J et al. (2000a). Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 60: 490–98.

    CAS  PubMed  Google Scholar 

  • Rak J, Yu JL (2004). Oncogenes and tumor angiogenesis: the question of vascular “supply” and vascular “demand”. Semin Cancer Biol 14: 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Rak JW, Yu JL, Kerbel RS, Coomber BL (2002). What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors. Cancer Res 62: 1931–34.

    CAS  PubMed  Google Scholar 

  • Rak J, Yu JL, Klement G, Kerbel RS (2000b). Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 5: 24–33.

    Article  CAS  PubMed  Google Scholar 

  • Rak J, Yu JL, Luyendyk J, Mackman N (2006). Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 66: 10643–46.

    Article  CAS  PubMed  Google Scholar 

  • Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ et al. (2009). Hypoxia-inducible factor-1alpha and -2alpha are expressed in most rectal cancers but only hypoxia-inducible factor-1alpha is associated with prognosis. Br J Cancer 100: 1666–73.

    Article  CAS  PubMed  Google Scholar 

  • Rasheed S, McDonald PJ, Northover JM, Guenther T (2008). Angiogenesis and hypoxic factors in colorectal cancer. Pathol Res Pract 204: 501–10.

    Article  PubMed  Google Scholar 

  • Rastinejad F, Polverini PJ, Bouck N (1989). Regulation of the activity of a new inhibitor by angiogenesis by a cancer suppressor gene. Cell 56: 345–55.

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20: 1487–95.

    Article  CAS  PubMed  Google Scholar 

  • Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R et al. (1997). Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57: 963–69.

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–11.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X et al. (2002). Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8: 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Rickles FR (2006). Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol Haemost Thromb 35: 103–10.

    Article  PubMed  Google Scholar 

  • Rickles FR (2009). Cancer and thrombosis in women – molecular mechanisms. Thromb Res 123 Suppl 2: S16–20.

    Article  PubMed  Google Scholar 

  • Risau W (1997). Mechanisms of angiogenesis. Nature 386: 671–74.

    Article  CAS  PubMed  Google Scholar 

  • Rivoltini L, Gambacorti-Passerini C, Supino R, Parmiani G (1989). Generation and partial characterization of melanoma sublines resistant to lymphokine activated killer (LAK) cells. Relevance to doxorubicin resistance. Int J Cancer 43: 880–85.

    Article  CAS  PubMed  Google Scholar 

  • Rmali KA, Puntis MC, Jiang WG (2007). Tumour-associated angiogenesis in human colorectal cancer. Colorectal Dis 9: 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Royston D, Jackson DG (2009). Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J Pathol 217: 608–19.

    Article  CAS  PubMed  Google Scholar 

  • Ruf W (2007). Redundant signaling of tissue factor and thrombin in cancer progression? J Thromb Haemost 5: 1584–87.

    Article  CAS  PubMed  Google Scholar 

  • Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N et al. (2003). T1alpha/ podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22: 3546–56.

    Article  CAS  PubMed  Google Scholar 

  • Schoppmann SF, Fenzl A, Nagy K, Unger S, Bayer G, Geleff S et al. (2006). VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 139: 839–46.

    Article  PubMed  Google Scholar 

  • Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St CB (2007). Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11: 539–54.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–32.

    Article  CAS  PubMed  Google Scholar 

  • Sessa C, Guibal A, Del CG, Ruegg C (2008). Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 5: 378–91.

    Article  CAS  PubMed  Google Scholar 

  • Seto S, Onodera H, Kaido T, Yoshikawa A, Ishigami S, Arii S et al. (2000). Tissue factor expression in human colorectal carcinoma: correlation with hepatic metastasis and impact on prognosis. Cancer 88: 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Shahrzad S, Quayle L, Stone C, Plumb C, Shirasawa S, Rak JW et al. (2005). Ischemia-induced K-ras mutations in human colorectal cancer cells: role of microenvironmental regulation of MSH2 expression. Cancer Res 65: 8134–41.

    Article  CAS  PubMed  Google Scholar 

  • Shahrzad S, Shirasawa S, Sasazuki T, Rak JW, Coomber BL (2008). Low-dose metronomic cyclophosphamide treatment mediates ischemia-dependent K-ras mutation in colorectal carcinoma xenografts. Oncogene 27: 3729–38.

    Article  CAS  PubMed  Google Scholar 

  • Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM et al. (2006). Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313: 1785–87.

    Article  CAS  PubMed  Google Scholar 

  • Shantsila E, Watson T, Lip GY (2007). Endothelial progenitor cells in cardiovascular disorders. J Am Coll Cardiol 49: 741–52.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M (2006). Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39: 469–78.

    Article  CAS  PubMed  Google Scholar 

  • Shigemori C, Wada H, Matsumoto K, Shiku H, Nakamura S, Suzuki H (1998). Tissue factor expression and metastatic potential of colorectal cancer. Thromb Haemost 80: 894–98.

    CAS  PubMed  Google Scholar 

  • Shojaei F, Ferrara N (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res 68: 5501–4.

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Singh M, Thompson JD, Ferrara N (2008). Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci USA 105: 2640–45.

    Article  CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initated angiogenesis. Nature 359: 843–45.

    Article  CAS  PubMed  Google Scholar 

  • Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008). Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28: 1703–13.

    Article  CAS  PubMed  Google Scholar 

  • Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7: 192–98.

    Article  CAS  PubMed  Google Scholar 

  • Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE (1997). Halting angiogenesis suppresses carcinoma cell invasion. Nature Med 3: 1222–27.

    Article  CAS  PubMed  Google Scholar 

  • Skog J, Wurdinger T, van RS, Meijer DH, Gainche L, Curry WT Jr et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10: 1470–76.

    Article  CAS  PubMed  Google Scholar 

  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform- specific receptor for vascular endothelial growth factor. Cell 92: 735–45.

    Article  CAS  PubMed  Google Scholar 

  • Soumaoro LT, Uetake H, Takagi Y, Iida S, Higuchi T, Yasuno M et al. (2006). Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum 49: 392–98.

    Article  PubMed  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6: 447–58.

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Achen MG (2008). From anti-angiogenesis to anti-lymphangiogenesis: emerging trends in cancer therapy. Lymphat Res Biol 6: 165–72.

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7: 186–91.

    Article  CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A et al. (2002). Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109: 327–36.

    CAS  PubMed  Google Scholar 

  • Staton CA, Chetwood AS, Cameron IC, Cross SS, Brown NJ, Reed MW (2007). The angiogenic switch occurs at the adenoma stage of the adenoma carcinoma sequence in colorectal cancer. Gut 56: 1426–32.

    Article  PubMed  Google Scholar 

  • St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. (2000). Genes expressed in human tumor endothelium. Science 289: 1197–202.

    Article  Google Scholar 

  • Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI et al. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456: 814–18.

    Article  CAS  PubMed  Google Scholar 

  • Sundlisaeter E, Dicko A, Sakariassen PO, Sondenaa K, Enger PO, Bjerkvig R (2007). Lymphangiogenesis in colorectal cancer–prognostic and therapeutic aspects. Int J Cancer 121: 1401–9.

    Article  CAS  PubMed  Google Scholar 

  • Swift MR, Weinstein BM (2009). Arterial-venous specification during development. Circ Res 104: 576–88.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Bucana CD, Liu W, Yoneda J, Kitadai Y, Cleary KR et al. (1996). Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst 88: 1146–51.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995). Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55: 3964–68.

    CAS  PubMed  Google Scholar 

  • Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M et al. (2008). Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454: 656–60.

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP et al. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6: 485–95.

    Article  CAS  PubMed  Google Scholar 

  • Taraboletti G, D’Ascenzo S, Giusti I, Marchetti D, Borsotti P, Millimaggi D et al. (2006). Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8: 96–103.

    Article  CAS  PubMed  Google Scholar 

  • Teicher BA, Sotomayor EA, Huang ZD (1992). Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52: 6702–4.

    CAS  PubMed  Google Scholar 

  • Teodoro JG, Parker AE, Zhu X, Green MR (2006). p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313: 968–71.

    Article  CAS  PubMed  Google Scholar 

  • Thurston G, Noguera-Troise I, Yancopoulos GD (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 7: 327–31.

    Article  CAS  PubMed  Google Scholar 

  • Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC et al. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266: 11947–54.

    CAS  PubMed  Google Scholar 

  • Tokunaga T, Nakamura M, Oshika Y, Abe Y, Ozeki Y, Fukushima Y et al. (1999). Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br J Cancer 79: 354–59.

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga T, Oshika Y, Abe Y, Ozeki Y, Sadahiro S, Kijima H et al. (1998). Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br J Cancer 77: 998–1002.

    Article  CAS  PubMed  Google Scholar 

  • Tomita T (2008). Immunocytochemical localization of lymphatic and venous vessels in colonic polyps and adenomas. Dig Dis Sci 53: 1880–85.

    Article  CAS  PubMed  Google Scholar 

  • Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D et al. (2004). AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64: 4931–41.

    Article  CAS  PubMed  Google Scholar 

  • Tsopanoglou NE, Maragoudakis ME (2004). Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost 30: 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93: 705–16.

    Article  CAS  PubMed  Google Scholar 

  • Underiner TL, Ruggeri B, Gingrich DE (2004). Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr Med Chem 11: 731–45.

    Article  CAS  PubMed  Google Scholar 

  • Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996). Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122: 2251–59.

    CAS  PubMed  Google Scholar 

  • Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007). Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67: 2912–15.

    Article  CAS  PubMed  Google Scholar 

  • Varki A (2007). Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 110: 1723–29.

    Article  CAS  PubMed  Google Scholar 

  • Verheul HM, Pinedo HM (2007). Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7: 475–85.

    Article  CAS  PubMed  Google Scholar 

  • Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-Habermann B et al. (2008). Inhibition of tissue factor signaling suppresses tumor growth. Blood 111: 190–99.

    Article  CAS  PubMed  Google Scholar 

  • Viloria-Petit A, Miquerol L, Yu JL, Gertsenstein M, Sheehan C, May L et al. (2003). Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. EMBO J 22: 4091–102.

    Article  CAS  PubMed  Google Scholar 

  • Viloria-Petit AM, Rak J, Hung M-C, Rockwell P, Goldstein N, Kerbel RS (1997). Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151: 1523–30.

    Google Scholar 

  • Vlahakis NE, Young BA, Atakilit A, Sheppard D (2005). The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 280: 4544–52.

    Article  CAS  PubMed  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741–53.

    Article  CAS  PubMed  Google Scholar 

  • Warren RS, Yuan H, Mati MR, Gillett NA, Ferrara N (1995). Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95: 1789–97.

    Article  CAS  PubMed  Google Scholar 

  • Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD et al. (2002). An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21: 1505–13.

    Article  CAS  PubMed  Google Scholar 

  • Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10: 145–47.

    Article  CAS  PubMed  Google Scholar 

  • Wolmark N, Yothers G, O’Connell J, Sharif S, Atkins JN, Seay TA, Fehrenbacher L, O’Reilly S, Allegra CJ (2009). A phase III trial comparing mFOLFOX6 to mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 27: 18 s, Abstract, ASCO, LBA4.

    Google Scholar 

  • Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO et al. (2004). VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64: 7822–35.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yakar S, Zhao L, Hennighausen L, LeRoith D (2002). Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res 62: 1030–35.

    CAS  PubMed  Google Scholar 

  • Yamauchi T, Watanabe M, Hasegawa H, Nishibori H, Ishii Y, Tatematsu H et al. (2003). The potential for a selective cyclooxygenase-2 inhibitor in the prevention of liver metastasis in human colorectal cancer. Anticancer Res 23: 245–49.

    CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000). Vascular-specific growth factors and blood vessel formation. Nature 407: 242–48.

    Article  CAS  PubMed  Google Scholar 

  • Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI et al. (2005). Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105: 1734–41.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, May L, Milsom C, Anderson GM, Weitz JI, Luyendyk JP et al. (2008). Contribution of host-derived tissue factor to tumor neovascularization. Arterioscler Thromb Vasc Biol 28: 1975–81.

    Article  CAS  PubMed  Google Scholar 

  • Yu JL, Rak JW (2003). Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Yu JL, Rak JW (2004). Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2: 2065–67.

    Article  CAS  PubMed  Google Scholar 

  • Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL (2001). Heterogeneous vascular dependence of tumor cell populations. Am J Pathol 158: 1325–34.

    Article  CAS  PubMed  Google Scholar 

  • Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS (2002b). Effect of p53 status on tumor response to antiangiogenic therapy. Science 295: 1526–28.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Rak JW, Klement G, Kerbel RS (2002a). VEGF isoform expression as a determinant of blood vessel patterning in human melanoma xenografts. Cancer Res 62: 1838–46.

    CAS  PubMed  Google Scholar 

  • Zerbib P, Grimonprez A, Corseaux D, Mouquet F, Nunes B, Petersen LC et al. (2009). Inhibition of tissue factor-factor VIIa proteolytic activity blunts hepatic metastasis in colorectal cancer. J Surg Res 153: 239–45.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Deng Y, Luther T, Muller M, Ziegler R, Waldherr R et al. (1994). Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94: 1320–27.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Aguilar G, Palencia S, Newton E, Abo A (2009). rNAPc2 inhibits colorectal cancer in mice through tissue factor. Clin Cancer Res 15: 208–16.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–7.

    Article  CAS  PubMed  Google Scholar 

  • Zumsteg A, Christofori G (2009). Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 21: 60–70.

    Article  PubMed  Google Scholar 

  • van Beijnum JR, Griffioen AW (2005). In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles. Biochim Biophys Acta 1755: 121–34.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by operating grants to J.R. from the Canadian Cancer Society (CCS) and Team Grant from Canadian Institutes of Health Research. JR is a recipient of the Jack Cole Chair in Pediatric Oncology at McGill University. Infrastructure funds were contributed by Fonds de la recherche en santé du Québec (FRSQ). We thank our families, especially Françoise Garnier, Jean-Pierre Garnier, Anna Rak and Danuta Rak for their support and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Rak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Garnier, D., Rak, J. (2010). Angiogenesis and Lymphangiogenesis in Colon Cancer Metastasis. In: Beauchemin, N., Huot, J. (eds) Metastasis of Colorectal Cancer. Cancer Metastasis - Biology and Treatment, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8833-8_9

Download citation

Publish with us

Policies and ethics