Skip to main content

Archaean Hydrothermal Systems in the Barberton Greenstone Belt and Their Significance as a Habitat for Early Life

  • Chapter
  • First Online:
Earliest Life on Earth: Habitats, Environments and Methods of Detection

Abstract

Hydrothermal systems have played an important role in shaping the 3.54–3.23 Ga volcano-sedimentary succession of the Barberton greenstone belt. Evidence for relatively low-temperature (≤150°C) seafloor hydrothermal activity is widely recorded in extensive silicification of volcanic and sedimentary rocks, leaching of elements commonly mobile during water-rock interaction, and extensive hydraulic fracturing. Evidence for the presence of high-temperature hydrothermal vents is scarce and restricted to a massive sulphide deposit near the top of the succession. Many of the zones affected by seafloor alteration are spatially associated with traces of early life, such as carbonaceous matter and bioalteration features. Diffuse venting of low-temperature hydrothermal fluids was a widespread phenomenon on the Palaeoarchaean seafloor, making it an ideal habitat for hyperthermophiles and the possible birthplace of life during earlier times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham K, Opfergelt S, Cardinal D, Hofmann A, Foley S, André L (2007) Si isotopes as a clue for understanding Eoarchaean silicification. Geochim Cosmochim Acta 71(Suppl 1):A3

    Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thompson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Geophys Monogr 91:85–114

    Google Scholar 

  • Anhaeusser CR (1976) The geology of the Sheba Hills area of the Barberton Mountain Land, South Africa, with particular reference to the Eureka syncline. Trans Geol Soc S Afr 79:253–280

    Google Scholar 

  • Armstrong RA, Compston W, de Wit MJ, Williams IS (1990) The stratigraphy of the 3.5–3.2 Ga Barberton greenstone belt revisited: a single zircon ion microprobe study. Earth Planet Sci Lett 101:90–106

    Article  Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit MJ (2006) Preservation of microbial biosignatures in 3.5 Ga pillow lavas from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 241:707–722

    Article  Google Scholar 

  • Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879

    Article  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  • Byerly GR, Kröner A, Lowe DR, Todt W, Walsh MM (1996) Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree groups. Precambrian Res 78:125–138

    Article  Google Scholar 

  • Channer DMD, de Ronde CEJ, Spooner ETC (1997) The Cl--Br--I- composition of ∼3.23 Ga modified seawater: implications for the geological evolution of ocean halide chemistry. Earth Planet Sci Lett 150:325–335

    Google Scholar 

  • Cloete M (1999) Aspects of volcanism and metamorphism of the Onverwacht Group lavas in the southwestern portion of the Barberton greenstone belt. Mem Geol Surv S Afr 84:232 pp

    Google Scholar 

  • Condie KC, Macke JE, Reimer TO (1970) Petrology and geochemistry of early Precambrian graywackes from the Fig Tree Group, South Africa. Geol Soc Am Bull 81:2759–2776

    Article  Google Scholar 

  • de Ronde CEJ, de Wit MJ (1994) Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution. Tectonics 13:983–1005

    Article  Google Scholar 

  • de Ronde CEJ, Ebbesen TW (1996) 3.2 b.y. of organic compound formation near sea-floor hot springs. Geology 24:791–794

    Article  Google Scholar 

  • de Ronde CEJ, Kamo SL (2000) An Archaean arc-arc collisional event: a short-lived (ca. 3 Myr) episode, Weltevreden area, Barberton greenstone belt, South Africa. J Afr Earth Sci 30:219–248

    Article  Google Scholar 

  • de Ronde CEJ, de Wit MJ, Spooner ETC (1994) Early Archean (>3.2 Ga) Fe-oxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, South Africa. Geol Soc Am Bull 106:86–104

    Article  Google Scholar 

  • de Ronde CEJ, Channer DMD, Faure K, Bray CJ, Spooner ETC (1997) Fluid chemistry of Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater. Geochim Cosmochim Acta 61:4025–4042

    Article  Google Scholar 

  • de Ronde CEJ, de Wit MJ, Spooner ETC, Channer DMdeR, Christenson BW, Bray CJ, Faure K (2004) Ironstone pods in the Archean Barberton greenstone belt, South Africa: Earth’s oldest seafloor hydrothermal vents reinterpreted as Quaternary subaerial springs. Geology, Online Forum, p e68

    Google Scholar 

  • de Vries ST (2004) Early Archaean sedimentary basins: depositional environment and hydrothermal systems. Examples from the Barberton and Coppin Gap Greenstone Belts. Geologica Ultraiectina 244:160 pp

    Google Scholar 

  • de Vries ST, Touret JLR (2007) Early Archaean hydrothermal fluids; a study of inclusions from the ∼3.4 Ga Buck Ridge Chert, Barberton Greenstone Belt, South Africa. Chem Geol 237:289–302

    Article  Google Scholar 

  • de Vries ST, Nijman W, Armstrong RA (2006) Growth-fault structure and stratigraphic architecture of the Buck Ridge volcano-sedimentary complex, upper Hooggenoeg Formation, Barberton Greenstone Belt, South Africa. Precambr Res 149:77–98

    Article  Google Scholar 

  • de Wit MJ, Hart RA (1993) Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos 30:309–335

    Article  Google Scholar 

  • de Wit MJ, Hart RJ, Martin A, Abbott P (1982) Archaean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies. Econ Geol 77:1783–1802

    Article  Google Scholar 

  • de Wit MJ, Armstrong RA, Hart RJ, Wilson AH (1987) Felsic igneous rocks within the 3.3 to 3.5 Ga Barberton greenstone belt: high-level crustal equivalents of the surrounding tonalite-trondhjemite terrain, emplaced during thrusting. Tectonics 6:529–549

    Article  Google Scholar 

  • DMd C, de Ronde CEJ, Spooner ETC (1997) The Cl-Br-I composition of ∼3.23 Ga modified seawater: implications for the geological evolution of ocean halide chemistry. Earth Planet Sci Lett 150:325–335

    Article  Google Scholar 

  • Duchac KC, Hanor JS (1987) Origin and timing of metasomatic silicification of an early Archean komatiite sequence, Barberton Mountain Land, South Africa. Precambr Res 37:125–146

    Article  Google Scholar 

  • Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Article  Google Scholar 

  • German CR, von Damm KL (2003) Hydrothermal processes. Treatise Geochem 6:181–222

    Article  Google Scholar 

  • Glikson M, Duck LJ, Golding S, Hofmann A, Bolhar R, Webb R, Baiano J, Sly L (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambr Res 164:187–200

    Article  Google Scholar 

  • Hanor JS, Duchac KC (1990) Isovolumetric silicification of early Archean komatiites: geochemical­ mass balances and constraints on origin. J Geol 98:863–877

    Article  Google Scholar 

  • Heinrichs T (1980) Lithostratigraphische Untersuchungen in der Fig Tree Gruppe des Barberton Greenstone Belt zwischen Umsoli und Lomati (Südafrika). Göttinger Arbeiten zur Geologie und Paläontologie 22:118 pp

    Google Scholar 

  • Heinrichs T, Reimer TO (1977) A sedimentary barite deposit from the Archean Fig Tree Group of the Barberton Mountain Land (South Africa). Econ Geol 72:1426–1441

    Article  Google Scholar 

  • Hofmann A (2005) The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambr Res 143:23–49

    Article  Google Scholar 

  • Hofmann A, Bolhar R (2007) The origin of carbonaceous cherts in the Barberton greenstone belt and their significance for the study of early life in mid-Archaean rocks. Astrobiology 7:355–388

    Article  Google Scholar 

  • Hofmann A, Harris C (2008) Stratiform alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem Geol 257:224–242

    Article  Google Scholar 

  • Hofmann A, Wilson AH (2007) Silicified basalts, bedded cherts and other sea floor alteration phenomena of the 3.4 Ga Nondweni greenstone belt, South Africa. In: Van Kranendonk MJ, Smithies RH, Bennett V (eds) Earth’s oldest rocks. Dev Precambr Geol 15:571–605

    Google Scholar 

  • Hofmann A, Reimold UW, Koeberl C (2006) Archean spherule layers in the Barberton Greenstone Belt, South Africa: a discussion of problems related to the impact interpretation. In: Reimold WU, Gibson R (eds) Processes on the early Earth. Geol Soc Am Spec Pap 405:33–56

    Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  • Hren MT, Lowe DR, Tice MM, Byerly GR, Chamberlain CP (2006) Stable isotope and rare earth element evidence for recent ironstone pods within the Archean Barberton greenstone belt, South Africa. Geochim Cosmochim Acta 70:1457–1470

    Article  Google Scholar 

  • Jaffres JBD, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122

    Article  Google Scholar 

  • Kamo SL, Davis DW (1994) Reassessment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U-Pb dating. Tectonics 13:167–192

    Article  Google Scholar 

  • Kasting JF, Tazewell Howard M, Wallmann K, Veizer J, Shields G, Jaffres J (2006) Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett 252:82–93

    Article  Google Scholar 

  • Kitajima K, Maruyama S, Utsunomiya S, Liou JG (2001) Seafloor hydrothermal alteration at an Archaean mid-ocean ridge. J Metamorph Geol 19:581–597

    Article  Google Scholar 

  • Kleinhanns IC, Kramers JD, Kamber BS (2003) Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contrib Mineral Petrol 145:377–389

    Article  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archean climatic temperatures inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580

    Article  Google Scholar 

  • Kohler EA (2003) The geology of the Archaean granitoid-greenstone terrain in the vicinity of Three Sisters, Barberton Greenstone Belt. Geol Surv S Afr Bull 133:150 pp

    Google Scholar 

  • Kohler EA, Anhaeusser CR (2002) Geology and geodynamic setting of Archaean silicic metavolcaniclastic rocks of the Bien Venue Formation, Fig Tree Group, northeast Barberton ­greenstone belt, South Africa. Precambr Res 116:199–235

    Article  Google Scholar 

  • Kröner A, Byerly GR, Lowe DR (1991) Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth Planet Sci Lett 103:41–54

    Article  Google Scholar 

  • Kröner A, Hegner E, Wendt JI, Byerly GR (1996) The oldest part of the Barberton ­granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precambr Res 78:105–124

    Article  Google Scholar 

  • Lowe DR (1999) Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa. Geol Soc Am Spec Pap 329:83–114

    Google Scholar 

  • Lowe DR, Byerly GR (1986) Archean flow-top alteration zones formed initially in a low-temperature sulphate-rich environment. Nature 324:245–248

    Article  Google Scholar 

  • Lowe DR, Byerly GR (2003) Ironstone pods in the Archean Barberton greenstone belt, South Africa: Earth’s oldest seafloor hydrothermal vents reinterpreted as Quaternary subaerial springs. Geology 31:909–912

    Article  Google Scholar 

  • Lowe DR, Byerly GR (2004) Ironstone pods in the Archean Barberton greenstone belt, South Africa: Earth’s oldest seafloor hydrothermal vents reinterpreted as Quaternary subaerial springs. Reply, Geology, p e69

    Google Scholar 

  • Lowe DR, Byerly GR (2007a) An overview of the geology of the Barberton greenstone belt and vicinity: implications for early crustal development. In: Van Kranendonk MJ, Smithies RH, Bennett V (eds) Earth’s oldest rocks. Elsevier, Amsterdam. Dev Precambr Geol 15:481–526

    Google Scholar 

  • Lowe DR, Byerly GR (2007b) Ironstone bodies of the Barberton greenstone belt, South Africa: products of a Cenozoic hydrological system, not Archean hydrothermal vents! Geol Soc Am Bull 119:65–87

    Article  Google Scholar 

  • Lowe DR, Fisher Worrel G (1999) Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa. Geol Soc Am Spec Pap 329:167–188

    Google Scholar 

  • Lowe DR, Nocita BW (1999) Foreland basin sedimentation in the Mapepe Formation, southern-facies Fig Tree Group. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa. Geol Soc Am Spec Pap 329:233–258

    Google Scholar 

  • Murphy PW (1990) The petrology, geochemistry and classification of the Bien Venue massive sulphide deposit, Baberton Mountainland. MSc Thesis, University of Natal, Durban

    Google Scholar 

  • Nijman W, de Bruijne KCH, Valkering ME (1999) Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambr Res 95:247–274

    Article  Google Scholar 

  • Paris I, Stanistreet IG, Hughes MJ (1985) Cherts of the Barberton greenstone belt interpreted as products of submarine exhalative activity. J Geol 93:111–129

    Article  Google Scholar 

  • Pearton TN (ed) (1986) Excursion guidebook for Barberton Mountain Land, Geocongress ’86. Geol Soc S Afr, 82 pp

    Google Scholar 

  • Perry EC (1967) The oxygen isotope geochemistry of ancient cherts. Earth Planet Sci Lett 3:62–66

    Article  Google Scholar 

  • Pirajno F (1992) Hydrothermal mineral deposits. Springer, Berlin, 709 pp

    Book  Google Scholar 

  • Ransom B, Byerly GR, Lowe DR (1999) Subaqueous to subaerial Archean ultramafic phreatomagmatic volcanism, Kromberg Formation, Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa. Geol Soc Am Spec Pap 329:151–166

    Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  Google Scholar 

  • Reimer TO (1975) Untersuchungen über Abtragung, sedimentation und diagenese im frühen Präkambrium am Beispiel der Sheba Formation (Südafrika). Geol Jahrb B 17:108 pp

    Google Scholar 

  • Reimer TO (1980) Archean sedimentary baryte deposits of the Swaziland Supergroup (Barberton Mountain Land, South Africa). Precambr Res 12:393–410

    Article  Google Scholar 

  • Rouchon V, Orberger B, Hofmann A, Pinti D (2009) Late diagenetic Fe-carbonates in Early Archean felsic sediments (Hooggenoeg Formation, Barberton Greenstone Belt, South Africa): implications for CO2 sequestration and the chemical budget of seawater. Precambr Res. doi:10.1016/j.precamres.2009.04.010

    Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 214–239

    Google Scholar 

  • Terabayashi M, Masada Y, Ozawa H (2003) Archean ocean-floor metamorphism in the North Pole area, Pilbara Craton, Western Australia. Precambr Res 127:167–180

    Article  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    Article  Google Scholar 

  • Tice MM, Lowe DR (2006) The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: a review and new evidence from the 3.42 Ga Buck Reef chert. Earth Sci Rev 76:259–300

    Article  Google Scholar 

  • Ueno Y, Yoshioka H, Maruyama S, Isozaki Y (2004) Carbon isotopes and petrography of kerogens in 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia. Geochim Cosmochim Acta 68:573–589

    Article  Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci Rev 74:197–240

    Article  Google Scholar 

  • Van Kranendonk MJ, Pirajno F (2004) Geological setting and geochemistry of metabasalts and alteration zones associated with hydrothermal chert ± barite deposits in the ca. 3.45 Ga Warrawoona Group, Pilbara Craton, Australia. Geochem Explor Environ Anal 4:253–278

    Article  Google Scholar 

  • Van Zuilen MA, Chaussidon M, Rollion-Bard C, Marty B (2007) Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: isotopic, chemical and structural characteristics of individual microstructures. Geochim Cosmochim Acta 71:655–669

    Article  Google Scholar 

  • Vearncombe S, Barley ME, Groves DI, McNaughton NJ, Mikucki EJ, Vearncombe JR (1995) 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia. J Geol Soc Lond 152:587–590

    Article  Google Scholar 

  • Viljoen MJ, Viljoen RP (1969) An introduction to the geology of the Barberton granite-greenstone terrain. Geol Soc S Afr Spec Publ 2:9–28

    Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambr Res 54:271–293

    Article  Google Scholar 

  • Ward JHW (1999) The metallogeny of the Barberton greenstone belts, South Africa and Swaziland. Mem Geol Surv S Afr 86:108 pp

    Google Scholar 

  • Westall F, de Wit MJ, Dann JC, van der Gaast S, de Ronde CEJ, Gerneke D (2001) Early Archean fossil bacteria and biofilms in hydrothermally influenced sediments from the Barberton greenstone belt, South Africa. Precambr Res 106:93–116

    Article  Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans R Soc B 361:1857–1875

    Article  Google Scholar 

Download references

Acknowledgments

Research in the Barberton greenstone belt was supported by Deutsche Forschungsgemeinschaft (Ho 2507/1–1/2), University of the Witwatersrand Research Committee and National Research Foundation of South Africa (FA2005040400027). Numerous people ­provided access, support, and hospitality, including Johan Eksteen and Property Mokoena (Mpumalanga Parks Board), Colin Wille (Taurus Estate), Jan Maarten and Wilma van Rensburg (Sappi Forests) and Roelf le Roux and Chris Rippon (Barberton Mines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hofmann, A. (2011). Archaean Hydrothermal Systems in the Barberton Greenstone Belt and Their Significance as a Habitat for Early Life. In: Golding, S., Glikson, M. (eds) Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8794-2_3

Download citation

Publish with us

Policies and ethics