Skip to main content

Chemical and Physical Modifications of Biomaterial Surfaces to Control Adhesion of Cells

  • Conference paper
  • First Online:
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles

Abstract

Cell adhesion is a prerequisite for healing of implant materials and colonization of tissue engineering scaffolds. Hence, it is a crucial task to control adhesion of cells on biomaterials, which can be achieved by surface modification. Different techniques can be used to modify the surface of materials, which have the desired physical and chemical properties, but lack sufficient biocompatibility. Among the techniques of surface modification, a number of self assembly methods have the advantage to work in solutions, so that different shaped materials can be modified easily. Self assembly methods selected in this study were chemisorption and covalent binding of alkylsiloxanes on glass (i), photochemical binding of polyethylene glycol on hydrophobic polymers (ii) and alternating adsorption of polyanions and polycations to assemble nanostructured multilayers on charged surfaces (iii). These methods enable to obtain control on adhesion of cells on different classes of biomaterials, which eventually may promote subsequent processes like cell growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn SJ, Kaholek M, Lee W-K, LaMattina B, Labean TH, Zauscher S (2004) Surface-initiated polymerization on nanopatterns fabricated by electron-beam lithography. Adv Mater 16(23–24):2141–2145

    Article  CAS  Google Scholar 

  • Albrecht W, Seifert B, Weigel T, Holländer M, Groth T, Hilke R (2003) Amination of poly(ether imide) membranes using di- and multivalent amines. Macromol Chem Physic 204:510–521

    Article  CAS  Google Scholar 

  • Altankov G, Groth T (1996) Fibronectin matrix formation and the biocompatibility of materials. J Mater Sci Mater Med 7:425–429

    Article  CAS  Google Scholar 

  • Altankov G, Grinnell F, Groth T (1996) Studies on the biocompatibility of materials: fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. J Biomed Mater Res 30:385–391

    Article  CAS  Google Scholar 

  • Altankov G, Groth T, Krasteva N, Albrecht W, Paul D (1997) Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. J Biomater Sci Polym Ed 8:721–740

    Article  CAS  Google Scholar 

  • Altankov G, Thom VH, Groth T, Jankova K, Jonsson G, Ulbricht M (2000) Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): effect of fibronectin. J Biomed Mater Res A 52(1):219–230

    Article  CAS  Google Scholar 

  • Altankov G, Richau K, Groth T (2003) The role of surface zeta potential and subtratum chemistry for regulation of dermal fibroblast interaction. Materialwiss Eng 34:1120–1128

    CAS  Google Scholar 

  • Anderson JM, Bonfield TL, Ziats NP (1990) Protein adsorption and cellular adhesion and activation on biomedical polymers. Int J Artif Organs 13:375–382

    CAS  Google Scholar 

  • Andrade JD, Hlady V (1986) Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv Polym Sci 79:1–63

    Article  CAS  Google Scholar 

  • Atkin R, Craig VSJ, Wanless EJ, Biggs S (2003) Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Adv Colloid Interface Sci 103:219–304

    Article  CAS  Google Scholar 

  • Bacakova L, Walachova K, Svorcik V, Hnatovicz V (2001) Adhesion and proliferation of rat vascular smooth muscle cells on polyethylene implanted with O+ and C+ ions. J Biomater Sci Polym Ed 12:817–834

    Article  CAS  Google Scholar 

  • Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115(14):6716–6721

    Article  CAS  Google Scholar 

  • Bergeron E, Lord E, Marquis ME, Groth Th, Faucheux N (2007) Modulation of cyclic AMP production in fibroblasts attached to substrata with different surface chemistries. In: Kendall JB (ed) Biomaterials research advances. Nova Science Publisher Inc., ISBN 978-1-60021-892-7, pp 21–36

    Google Scholar 

  • Bird RI, Hall B, Kojima M, Chapman D (1994) Phosphatidylcholine reduces polyester thrombogenicity shown by material thromboelastography (MTEG). Clin Sci 78:P78–P78

    Google Scholar 

  • Bongrand P (1982) Physics of cell adhesion. Prog Surf Sci 12:217–286

    Article  Google Scholar 

  • Brétagnol F, Valsesia A, Sasaki T, Ceccone G, Colpo P, Rossi F (2007) Direct nanopatterning of 3D chemically active structures for biological applications. Adv Mater 19:1947–1950

    Article  CAS  Google Scholar 

  • Brown MB, Jones SA (2005) Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. JEADV 19:308–318

    CAS  Google Scholar 

  • Chen Y, Pépin A (2001) Nanofabrication: convential and nonconventional methods. Electrophoresis 22:187–207

    Article  CAS  Google Scholar 

  • Choi C-H, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, Kim C-J (2007) Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28:1672–1679

    Article  CAS  Google Scholar 

  • Croll TI, O’Connor J, Stevens GW, Cooper-White JJ (2006) A blank state? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7:1610–1622

    Article  CAS  Google Scholar 

  • Curtis A (2004) Tutorial on the biology of nanotopography. IEEE Trans Nanobioscience 3:293–295

    Article  Google Scholar 

  • Curtis ASG, Clark P (1990) The effects of topography and mechanical properties of materials on cell behaviour. Crit Rev Biocompat 5:343–362

    CAS  Google Scholar 

  • Dalby MJ, Chields S, Riehle MO, Johnstone H (2002) Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials 24:927–935

    Article  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  • Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by self-assembly process III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210/211:831–835

    Article  Google Scholar 

  • Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis Y (2002) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22:87–96

    Article  Google Scholar 

  • Diener A, Nebe B, Luethen F, Becker P, Beck U, Neumann HG, Rychly J (2005) Control of focal adhesion dynamics by material surface charcteristics. Biomaterials 26:383–392

    Article  CAS  Google Scholar 

  • Faucheux N, Schweiss R, Lützow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesions studies. Biomaterials 25:2721–2730

    Article  CAS  Google Scholar 

  • Faucheux N, Tzoneva R, Nagel M-D, Groth T (2006) The dependence of fibrillar adhesions in human fibroblasts on substatum chemistry. Biomaterials 27:234–245

    Article  CAS  Google Scholar 

  • Filippini P, Rainaldi G, Ferrante A, Mecheri B, Gabrielli G, Bombace M, Indovina PL, Santini MT (2001) Modulation of osteosarcoma cell growth and differentiation by silane-modified surfaces. J Biomed Mater Res 55:338–349

    Article  CAS  Google Scholar 

  • Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9:701–706

    Article  CAS  Google Scholar 

  • Fukuda T, Goto A, Ohno K (2000) Mechanisms and kinetics of living radical polymerizations. Macromol Rapid Comm 21:151–165

    Article  CAS  Google Scholar 

  • Garcia AJ, Vega MD, Boettiger D (1999) Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 10:785–798

    CAS  Google Scholar 

  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105(4):1171–1196

    Article  CAS  Google Scholar 

  • Goda T, Konno T, Takai M, Moro T, Ishihara K (2006) Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials 27:5151–5160

    Article  CAS  Google Scholar 

  • Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  • Goldstein AS, DiMilla PA (2002) Effect of adsorbed fibronectin concentration on cell adhesion and deformation under shear on hydrophobic surfaces. J Biomed Mater Res 59:665–675

    Article  CAS  Google Scholar 

  • Gopinadhan M, Ivanova O, Ahrens H, Günther J-U, Steitz R, Helm CA (2007) The influence of secondary interactions during the formation of polyelectrolyte multilayers: layer thickness, bound water and layer interpenetration. J Phys Chem B 111:8426–8434

    Article  CAS  Google Scholar 

  • Grinnell F (1978) Cellular adhesiveness and extracellular substrata. Int Rev Cytol 53:65–144

    Article  CAS  Google Scholar 

  • Grinnell F, Feld M (1982) Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem 257:4888–4893

    CAS  Google Scholar 

  • Groth T, Altankov G (1996) Studies on the cell-biomaterial interaction: role of tyrosine phosphorylation during fibroblasts spreading on surfaces varying in wettability. Biomaterials 17:1227–1234

    Article  CAS  Google Scholar 

  • Groth T, Derdau K, Strietzel F, Foerster F, Wolf H (1992) The hemocompatibility of biomaterials in vitro - Investigations on the mechanism of the whole blood clot formation test. ATLA 20:390–395

    Google Scholar 

  • Groth T, Herrmann K, Campbell EJ, New RRC, Hall B, Hesse R, Goering H (1994) Protein adsorption, lymphocyte adhesion and platelet adhesion/activation on polyurethane ureas is related to hard segment content and composition. J Biomater Sci Polym Ed 6:497–510

    Article  CAS  Google Scholar 

  • Groth T, Synowitz J, Malsch G, Richau K, Albrecht W, Lange K-P, Paul D (1997) Contact activation of plasmatic coagulation on polymeric membranes measured by the activity of kallikrein in heparinized plasma. J Biomater Sci Polym Ed 8:797–808

    Article  CAS  Google Scholar 

  • Guo L, Kawazoe N, Fan Y, Ito Y, Tanaka J, Tateishi T, Zhang X, Chen G (2008) Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials 29:23–32

    Article  CAS  Google Scholar 

  • Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15:2525–2533

    Article  CAS  Google Scholar 

  • Halperin A, Tirrel N, Lodge TP (1992) Tethered chains in polymer microstructures. Adv Polym Sci 100:31–71

    Article  CAS  Google Scholar 

  • Hamerli P, Weigel T, Groth T, Paul D (2003a) Surface properties of and cell adhesion onto allylamine-plasma coated polyethylenterephtalat membranes. Biomaterials 24:3989–3999

    Article  CAS  Google Scholar 

  • Hamerli P, Weigel T, Groth T, Paul D (2003b) Enhanced tissue-compatibility of polyethylenterephtalat membranes by plasma aminofunctionalisation. Surf Coat Tech 174–175:574–578

    Article  CAS  Google Scholar 

  • Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293

    Article  CAS  Google Scholar 

  • Healy KE, Lom B, Hockberger PE (1994) Spatial distribution of mammalian cells dictated by material surface chemistry. Biotechnol Bioeng 43:792–800

    Article  CAS  Google Scholar 

  • Hu Y, Winn SR, Krajbich I, Hollinger JO (2002) Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J Biomed Mater Res 64A:583–590

    Article  CAS  Google Scholar 

  • Huang S, Ingber DE (1999) The structural and mechanical complexity of cell growth control. Nat Cell Biol 1:131–138

    Article  CAS  Google Scholar 

  • Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261:91–103

    Article  CAS  Google Scholar 

  • Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565–576

    Article  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  Google Scholar 

  • Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21:569–594

    Article  CAS  Google Scholar 

  • Ishihara K, Oshida H, Endo Y, Watanabe A, Ueda T, Nakabajashi N (1993) Effect of phospholipid adsorption on nonthrombogeniciry of polymer with phospholipid head groups. J Biomed Mater Res 27:1309–1314

    Article  CAS  Google Scholar 

  • Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Article  CAS  Google Scholar 

  • Iwasaki Y, Nakabayashi N, Nakatani M, Mihara T, Kurita K, Ishihara K (1999) Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. J Biomater Sci Polym Ed 10:513–529

    Article  CAS  Google Scholar 

  • Jauregui HO (1987) Cell adhesion to biomaterials. The role of several extracellular matrix components in the attachment of non-transformed fibroblasts and parenchymal cells. ASAIO Trans 33(2):66–74

    Article  CAS  Google Scholar 

  • Jeon SI, Andrade JD (1991) Protein-surface interactions in the presence of polyethylene oxide II. Effect of protein size. J Colloid Interface Sci 142:159–165

    Article  CAS  Google Scholar 

  • Jonsson U, Ivarson B, Lundstrom I, Berghem L (1982) Adsorption behavior of fibronectin on well characterized silica surfaces. J Colloid Interface Sci 90:148–163

    Article  Google Scholar 

  • Juliano DJ, Saavedra SS, Truskey GA (1993) Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J Biomed Mater Res 27:1103–1113

    Article  Google Scholar 

  • Keselowsky BG, Collard DM, Garcia AJ (2003) Surface chemistry study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J Biomed Mater Res 66A:247–259

    Article  CAS  Google Scholar 

  • Kim JH, Kim SC (2002) PEO-grafting on PU/PS IPNs for enhanced blood compatibility – effect of pendant length and grafting density. Biomaterials 23:2015–2025

    Article  CAS  Google Scholar 

  • Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H-J (2003) Surface modification of poly (vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials 24:3663–3670

    Article  CAS  Google Scholar 

  • Kondyurin A, Gan BK, Bilek MMM, Mizuno K, McKenzie DR (2006) Etching and structural changes of polystyrene films during plasma immersion ion implantation from argon plasma. Nucl Instrum Meth B 251:413–418

    Article  CAS  Google Scholar 

  • Lazos D, Franzka S, Ulbricht M (2005) Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly (ethylene glycols) with varied chain lengths. Langmuir 21:8774–8784

    Article  CAS  Google Scholar 

  • Lee JH, Kopecek J, Andrade JD (1989) Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants. J Biomed Mater Res 23:351–368

    Article  Google Scholar 

  • Lendlein A (1999) Polymers for implants with biomedical applications. Chem Unserer Zeit 33:279–295

    Article  CAS  Google Scholar 

  • Liu Z-M, Groth T (2010) Modification of poly (L-lactide) with poly (ethylene imine) for tissue engineering applications. Eur Polym J (submitted)

    Google Scholar 

  • Liu Z-M, Lee S, Sarun S, Peschel D, Groth T Immobilization of poly (ethylene imine) on polylactide to control MG-63 cell adhesion, proliferation and function. Biomaterials (submitted)

    Google Scholar 

  • Liu Z-M, Xu Z-K, Wang J-Q, Wu J, Fu J-J (2004) Surface modification of polypropylene imcrofiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur Polym J 40:2077–2087

    Article  CAS  Google Scholar 

  • Liu Z-M, Xu Z-K, Wan L-S, Wu J, Ulbricht M (2005) Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. J Membrane Sci 249(1–2):21–31

    Article  CAS  Google Scholar 

  • Liu Z-M, Tingry S, Innocent C, Durand J, Xu Z-K, Seta P (2006) Modification of microfiltration polypropylene membranes by allylamine plasma treatment: influence of the attachment routes on peroxidase immobilization and enzyme efficiency. Enzyme Microb Technol 39(4):868–876

    Article  CAS  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular cell biology, 5th edn. Freeman, New York

    Google Scholar 

  • Ma Z, Gao C, Shen J (2003) Surface modification of poly-L-lactid acid (PLLA) membrane by grafting acrylamide: an effective way to improve cytocompatibility for chondrocytes. J Biomater Sci Polym Ed 14:13–25

    Article  CAS  Google Scholar 

  • McClary KB, Ugarova T, Grainger DW (2000) Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res 50:428–439

    Article  CAS  Google Scholar 

  • Morra M (2000) On the molecular basis of fouling resistance. J Biomater Sci Polym Ed 11:547–569

    Article  CAS  Google Scholar 

  • Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78

    Article  CAS  Google Scholar 

  • Mullaney M, Groth T, Darkow R, Hesse R, Albrecht W, Paul D, von Sengbusch G (1999) Investigation of plasma protein adsorption on functionalized nanoparticles for application in apheresis. Artif Organs 23:87–97

    Article  CAS  Google Scholar 

  • Müller M, Rieser T, Lunkwitz K, Meier-Haack J (1999) Polyelectrolyte complex layers: a promising concept for antifouling coatings verified by in-situ ATR-FTIR spectroscopy. Macromol Rapid Comm 20:607–611

    Article  Google Scholar 

  • Müller M, Rieser T, Dubin PL, Lunkwitz K (2001) Selective interaction between proteins and the outermost surface of polyelectrolyte multilayers: influence of the polyanion type, pH and salt. Macromol Rapid Comm 22:390–395

    Article  Google Scholar 

  • Norde W, Lyklema J (1991) Why proteins prefer interfaces. J Biomater Sci Polym Ed 2(3):183–202

    Article  CAS  Google Scholar 

  • Pasche V, Vörös J, Griesser HJ, Spencer ND, Textor M (2005) Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. J Phys Chem B 109:17545–17552

    Article  CAS  Google Scholar 

  • Pelham RJ, Wang Y-L (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665

    Article  CAS  Google Scholar 

  • Rémy-Kristensen A, Clamme J-P, Vuilleumier C, Kuhry J-G, Mély Y (2001) Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim Biophys Acta 1514:21–32

    Article  Google Scholar 

  • Richert L, Arntz Y, Schaaf P, Voegel J-C, Picart C (2004) pH dependent growth of poly(L-lysine)/poly(L-glutamic) acid multilayer films and their cell adhesion properties. Surf Sci 570:13–29

    Article  CAS  Google Scholar 

  • Ruoslahti E (1999) Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76:1–20

    Article  CAS  Google Scholar 

  • Satoh T, Nishiyama K, Nagahata M, Teramoto A, Abe K (2004) The research on physiological property of functionalized hyaluronan: interaction between sulphated hyaluronan and plasma proteins. Polym Adv Technol 15:720–725

    Article  CAS  Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten. Z Physik 155:206–222

    Article  CAS  Google Scholar 

  • Seifert B, Mihanetzis G, Groth T, Albrecht W, Richau K, Missirlis Y, Paul D, von Sengbusch G (2002) Polyetherimide – a new membrane forming polymer for biomedical applications. Artif Organs 26:189–199

    Article  CAS  Google Scholar 

  • Singh N, Cui X, Boland T, Husson SM (2007) The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Biomaterials 27:763–771

    Article  CAS  Google Scholar 

  • Sofia SJ, Premnath V, Merrill EW (1998) Poly (ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31:5059–5070

    Article  CAS  Google Scholar 

  • Steele JG, Johnson G, Underwood PA (1992) Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J Biomed Mater Res 26:861–884

    Article  CAS  Google Scholar 

  • Sukenik CN, Balachander N, Culp LA, Lewandowska K, Merritt K (1990) Modulation of cell adhesion by modification of titanium surfaces with covalently attached self-assembled monolayers. J Biomed Mater Res 24:1307–1323

    Article  CAS  Google Scholar 

  • Szleifer I (1997) Protein adsorption on tethered polymer layers: effect of polymer chain architecture and composition. Physica A 244:370–388

    Article  CAS  Google Scholar 

  • Tang L, Eaton JW (1993) Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178(6):2147–2156

    Article  CAS  Google Scholar 

  • Tang Z, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18:3203–3224

    Article  CAS  Google Scholar 

  • Thom VH, Altankov G, Groth T, Jankova K, Jonsson G, Ulbricht M (2000) Optimizing cell-surface interactions by photografting of poly(ethylene glycol). Langmuir 16:2756–2765

    Article  CAS  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  CAS  Google Scholar 

  • Trommler A, Wolf H, Gingell D (1985) Red blood cells experience electrostatic repulsion but make molecular adhesions with glass. Biophys J 48:835–841

    Article  CAS  Google Scholar 

  • Tsai WB, Grunkemeier JM, McFarland CD, Horbett TA (2002) Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J Biomed Mater Res 60(3):348–359

    Article  CAS  Google Scholar 

  • Tziampazis E, Kohn J, Moghe PV (2000) PEG variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials 21:511–520

    Article  CAS  Google Scholar 

  • Tzoneva R, Seifert B, Albrecht W, Richau K, Lendlein A, Groth T (2008) Poly (ether imide) membranes – studies on the effect of surface modification and protein preadsorption on endothelial adhesion, growth and function. J Biomater Sci Polym Ed 19:837–852

    Article  CAS  Google Scholar 

  • van Kooten TG, Spijker HT, Busscher HJ (2004) Plasma-treated polystyrene surfaces: model surfaces for studying cell–biomaterial interactions. Biomaterials 25:1735–1747

    Article  CAS  Google Scholar 

  • Vermette P, Meagher L (2003) Interactions of phospholipid- and poly (ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids Surf B Biointerfaces 28:153–198

    Article  CAS  Google Scholar 

  • Vert M, Domurado D (2000) Poly (ethylene glycol): protein repulsive or albumin compatible? J Biomater Sci Polym Ed 11:1307–1317

    Article  CAS  Google Scholar 

  • Vitte J, Benoliel A-M, Pierres A, Bongrand P (2005) Regulation of cell adhesion. Clin Hemorheol Microcirc 33:167–188

    CAS  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Benoit J-P (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373

    Article  CAS  Google Scholar 

  • Webb K, Hlady V, Tresco PA (2000) Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res 49:362–368

    Article  CAS  Google Scholar 

  • Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG (2002) The use of materials patterned on a nano and micrometer scale in cellular engineering. Mat Sci Eng C 19:263–269

    Article  Google Scholar 

  • Xu X, Kwok RWM, Lau WM (2006) Surface modification of polystyrene by low energy hydrogen ion beam. Thin Solid Films 514:182–187

    Article  CAS  Google Scholar 

  • Yi H, Wu L-Q, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromolecules 6(6):2881–2894

    Article  CAS  Google Scholar 

  • Yoo D, Shiratori SS, Rubner MF (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31:4309–4318

    Article  CAS  Google Scholar 

  • Zajac R, Chakrabarti A (1995) Irreversible polymer adsorption from semidilute and moderately dense solutions. Phys Rev E 52:6536–6549

    Article  CAS  Google Scholar 

  • Zhang TXuN, Nichols HL, Shi D, Wen X (2007) Modification of nanostructured materials for biomedical applications. Mat Sci Eng C 27:579–594

    Article  CAS  Google Scholar 

  • Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of the results presented here is based on contributions from previous projects and co-operations with Mathias Ulbricht, University Essen-Duisburg and Volkmar Thom, Sartorius AG. Financial support for these studies was provided by Deutsche Forschungsgemeinschaft (Gr 1290/4-1 and Gr 1290/4-2) and European Union funded Marie-Curie-Fellowships to George Altankov (HPMF-CT-2001-01275), Nathalie Faucheux (HPMF-CT-2000-00883) and Zhen-Mei Liu (MIF1-CT2005-021845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Groth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Groth, T. et al. (2010). Chemical and Physical Modifications of Biomaterial Surfaces to Control Adhesion of Cells. In: Shastri, V., Altankov, G., Lendlein, A. (eds) Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8790-4_13

Download citation

Publish with us

Policies and ethics