Skip to main content

Decreasing Nitrate Leaching in Vegetable Crops with Better N Management

  • Chapter
  • First Online:
Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 4))

Abstract

The relatively low cost of fertiliser and the increasing demand and competition for cheap food have encouraged the over-fertilisation of field vegetables over the past few decades. However, more recent scientific and public concern over eutrophication of water and the accumulation of nitrates in vegetables for human consumption requires a more effective use of nitrogen fertilisers in a more sustainable manner, which minimises the potential risk of negative effects on the environment and human health. In this review, we present the current state of the art in knowledge of N dynamic in vegetable crops and the latest advances in nutrient management, which could be used to mitigate nitrate losses from vegetables fields to the wider environment. Findings are based on published data and personal communications with researchers and consultants across Europe. Areas of research where further work is required are identified and described. A conclusive chapter reports on the economic and environmental impact of technology transfer of improved nitrogen management in three south European states and in the Netherlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    (%Nc = 4.8 DW−0.34 as an average relationship for C3 species) and C4 (%Nc = 3.6 DW−0.34)

References

  • AA.VV (2006) Acta Hortic 700

    Google Scholar 

  • Agostini F, Scholefield P (2005). Simulation of carbon and nitrogen in the soil after straw incorporation. Ital J Agron (8) 2:63–71

    Google Scholar 

  • Andrasky TW, Bundy LG (1999) Nitrogen cycling in crop residues and cover crops on an irrigated sandy soil. Agron Abstr 1999, 224

    Google Scholar 

  • Anthony S, Chadwick D, Granger S, Haygart P, Harris D (2005) Cost-cube: a measure centric model for characterization of diffuse pollution. In: Schroder JJ, Neeteson JJ (eds) N Management in agrosystems in relation to the Water Frame Directive, Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 7–11

    Google Scholar 

  • Arregui LM, Lasa B, Lafarga A, Iraeta I, Baroja E, Quemada M (2006) Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. Eur J Agron 24:140–148

    CAS  Google Scholar 

  • Aveline A, Guichard L (2005) Comparing indicators of nitrate leaching in various cropping systems. In: Schroder JJ, Neeteson JJ (eds) N Management in agro-systems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 64–67

    Google Scholar 

  • Bailey RJ, Spackman E (1996) A model for estimating soil moisture changes as an aid to irrigation scheduling and crop water use studies. I. Operational details and description. Soil Use Manage 12:122–128

    Google Scholar 

  • Bardossy A, Haberlandt U, Krysanova V (2003) Automatic fuzzy-rule assessment and its application to the modelling of nitrogen leaching for large regions. Soft Comput 6:370–385

    Google Scholar 

  • Barret JH, Parslow RC, McKinney PA, Law GR, Forman D (1998) Nitrate in drinking water and incidence of gastric, esophageal, and brain cancer in Yorkshire, England. Cancer Cause Control 9:153–159

    Google Scholar 

  • Bar-Yosef B, Sagiv B (1982) Response of tomatoes to N and water applied via trickle irrigation system. Nitrogen Agron J 74:633–637

    Google Scholar 

  • Battilani A (2006) Water and nitrogen use efficiency, dry matter accumulation and nitrogen uptake in fertigated processing tomato. Acta Hortic 724:67–74

    CAS  Google Scholar 

  • Battilani A, Solimando D (2006) Yield, quality and nitrogen use efficiency of fertigated watermelon. Acta Hortic 700:85–90

    Google Scholar 

  • Battilani A, Bussieres P, Dumas Y (2003) FERTIRRIGERE: a simple tool-model for managing water and nutrient supply in drip-irrigated processing tomatoes. Acta Hortic 613:155–158

    Google Scholar 

  • Battilani A (2001) Calcolare correttamente la fertirrigazione con il minimo input. Inf Agrario 57:35–42

    Google Scholar 

  • Battilani A, Fereres E (1999) The use of decision support systems to manage fertigation and to minimize enviromental effects: a challange for the future. Acta Hortic 487:547–555

    Google Scholar 

  • Baumann DT, Bastiaans L, Kropff MJ (2003) Analysis and design of a leek-celery intercropping system using mechanistic and descriptive models. Acta Hortic 638:59–68

    Google Scholar 

  • Baumgarten A (2006) Evaluation of field methods for the assessment of soil Nmin–content. Acta Hortic 700:205–209

    Google Scholar 

  • Belanger G, Ziadi N, Walsh JR, Richards JE, Milburn PH (2003) Residual soil nitrate after potato harvest. J Environ Qual 32:607–612

    PubMed  CAS  Google Scholar 

  • Bending GD, Turner MK (1999) Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil. Biol Fertil Soils 29:319–327

    CAS  Google Scholar 

  • Bending GD, Turner MK, Burns IG (1998) Fate of nitrogen from crop residues as affected by biochemical quality and the microbial biomass. Soil Biol Biochem 30:2055–2065

    CAS  Google Scholar 

  • Benincasa P, Boldrini A, Tei F, Guiducci M (2004) N release from several green manure crops. Proceedings of the VIII ESA Congress, Copenhagen, Denmark, 11–15 July 2004, pp 971–972

    Google Scholar 

  • Bertschinger L (2004) Making sustainability an issue in applied horticultural research. Acta Hortic 638:17–22

    Google Scholar 

  • Bianco VV (1990) Environment, agricultural practices and quality of vegetable crops. Riv di Agron 24(2/3):81–131

    Google Scholar 

  • Bjorneberg DL, Westermann DT, Aase JK (2002) Nutrient losses in surface irrigation runoff. J Soil Water Conserv 57:524–529

    Google Scholar 

  • Boatto V, Pilati L, Defrancesco E, Galletto L (1996) Implicazioni economiche delle politiche di contenimento della fertilizzazione: il caso del Bacino del Meolo. Agric Ric 164:163–180

    Google Scholar 

  • Boldrini A, Guiducci M, Benincasa P, Tosti G, Tei F (2006) Can we modulate N supply and release from green manure crops? Proceedings of the IX ESA (European Society for Agronomy) Congress, 4–7 Sept 2006, Warszawa, Poland, pp 371–372

    Google Scholar 

  • Borgensen CD, Heidmeann T, Jorgense U (2005) Sensitivity of using different soil type representations for field and regional simulation of N leaching. In: Schroder JJ, Neeteson JJ (eds) N Management in Agrosystems in relation to the Water Frame Directive. Proceedings of 14th N Workshop, 2005, Maastricht, The Netherlands

    Google Scholar 

  • Bravdo BA (2003) Crop improvement and production strategies in arid environments: salt, drought and heat stress. Acta Hortic 618:255–265

    Google Scholar 

  • Burns IG (2006) Assessing N fertiliser requirements and the reliability of different recommendation systems. Acta Hortic 700:35–48

    CAS  Google Scholar 

  • Burns IG, Rahn CR, Greenwood DJ, Draycott A, Richardson AS (1997) A user-friendly decision support system for adjusting N fertiliser requirements to local conditions. Managing soil fertility for intensive vegetable production systems in Asia. Proceedings of an international conference, AVRDC, Taiwan, 4–10 November, 1996, pp 314–324

    Google Scholar 

  • Burns IG (1976) Equations to predict the leaching of nitrate uniformly incorporated to a known depth or uniformitly distributed throughout a soil profile. J Agric Sci (Cambridge) 86:305–313

    Google Scholar 

  • Campiglia E, Caporali F, Paolini R, Mancinelli R (2005) Ruolo delle leguminose annuali autoriseminanti nei sistemi colturali biologici in ambiente mediterraneo. In: Cicia G et al (eds) L’agricoltura biologica fuori dalla nicchia. Edizioni Scientifiche Italiane, Napoli

    Google Scholar 

  • Cantarella H, Mattos D, Quaggio J, Rigolin A (2003) Fruit yield of Valecnia sweet orange with different N sources and the loss of applied N. Nutr Cycl Agroecosyst 67:215–233

    CAS  Google Scholar 

  • Cantor KP (1997) Drinking water and cancer. Cancer Cause Control 8:292–208

    CAS  Google Scholar 

  • Cape J, Anderson M, Rowland A, Wilson D (2004) Organic nitrogen in precipitation across the United Kingdom. Water Air Soil Pollut: Focus 4:25–35

    CAS  Google Scholar 

  • CEC (1991) Council directive of 12th December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Off J Eur Commun 30 Dec 1991, L135/1–8

    Google Scholar 

  • Chaves B, Mateu PL, De Neve S, Hofman G, Van Cleemput O (2006) Conserving N from high N crop residues under field conditions by using on- and off-farm organic biological waste materials. Acta Horticul 700:255–261

    Google Scholar 

  • Coccato M, Di Luzio M (1996) Applicazioni di un modello idrologico distribuito per il controllo dell’inquinamento agricolo di origine diffusa: il caso del Bacino del Meolo. Agricult Ric 164:181–191

    Google Scholar 

  • Colla G, Battistelli A, Moscatello S, Proietti S, Casa R, Lo CB, Leoni C (2001) Effects of reduced irrigation and nitrogen fertigation rate on yield, carbohydrate accumulation and quality of processing tomatoes. Acta Hortic 542:187–196

    Google Scholar 

  • Collins AL, Strőmqvist J, Davison PS, Lord EI (2007) Appraisal of phosphorus and sediment transfer in three pilot areas identified for the catchment sensitive farming initiative in England: application of the prototype PSYCHIC model. Soil Use Manage 23(Suppl 1):117–132

    Google Scholar 

  • Coltman RR (1987) Sampling consideration for nitrate quick test of greenhouse tomatoes. J Am Soc Hortic Sci 112:922–927

    Google Scholar 

  • Cook WP, Sanders DC (1991) Nitrogen application frequency for drip irrigated tomatoes. HortScience 26:250–252

    CAS  Google Scholar 

  • Costigan PA (1988) The placement of starter fertilizers to improve the early growth of drilled and transplanted vegetables. Proc Fertil Soc 274:1–24

    Google Scholar 

  • Coulombe J, Villeneuve S, Belec C, Tremblay N (1999) Evaluation of soil and petiole sap nitrate quick tests for broccoli in Quebec. Acta Hortic 506:147–152

    Google Scholar 

  • CRPV-RER (2007) Disciplinari di Produzione Integrata 2007. (ed. Centro Ricerche Produzioni Vegetali – Regione Emilia Romagna). Bologna, Italy; http://www.crpv.it/; Access date 3/03/2007.

  • Curtois P, Destain P, Renardad S, Cuvelier M (2005) Field scale N-management: soil and plant diagnostic tools applied within the agricultural Surface Survey (Belgium). In: Schroder JJ, Neeteson JJ (eds) N Management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 257–261.

    Google Scholar 

  • Dachler M (2001) Sampling and analytical methods for the determination of available soil nitrogen in Australia. Acta Hortic 506:239–245

    Google Scholar 

  • Dalvi VB, Tiwari KN, Pawade MN, Phirke PS (1999) Response surface analysis of tomato production under microirrigation. Agric Water Manage 41:11–19

    Google Scholar 

  • Davies DB (2000) The nitrate issue in England and Wales. Soil Use Manage 16:142–144

    Google Scholar 

  • Davison PS, Withers PJA, Lord EI, Betson MJ, Strömqvist J (2008) PSYCHIC – A process-based model of phosphorus and sediment mobilisation and delivery within agricultural catchments. Part 1: Model description and parameterisation. J Hydrol 350 (3–4):290–302

    CAS  Google Scholar 

  • De Luca S, Fagnano M, Quaglietta-Chiaranda F (2006) The effect of organic fertilization on yields of tomato crops in the Sele River Plain. Acta Hortic 700:103–106

    Google Scholar 

  • De Neve S, Van Desteene J, Hartmann R, Hofmann G (1999) N mineralisation and soil solution electrical conductivity changes: on line monitoring of the mineralisation process using TDR. Proceedings of the 10th nitrogen workshop, Copenhagen, Denmark, 2, pp 122–125.

    Google Scholar 

  • De Neve S, Hofmann G (2001) Time domain reflectometry for monitoring soil nitrogen dynamics. Acta Hortic 506:233–238

    Google Scholar 

  • De Neve S, Pannier J, Hofmann G (1994) Fractionation of vegetable crop residues in relation to in situ N mineralization. Eur J Agron 3:267–272

    Google Scholar 

  • De Paz JM, Ramos C (2002) Linkage of a geographical information system with the GLEAMS model to assess nitrate leaching in agricultural areas. Environ Pollut 118:249–258

    Google Scholar 

  • De Paz JM, Ramos C (2001) The Use of a GIS_N model system to assess nitrate leaching in agricultural areas. Acta Hortic 506:225–229

    Google Scholar 

  • De Tourdonnet S, Meynard JM, La Folie F, Roger-Estrade J, Lagier J, Sebillotte M (2001) Non-uniformity of environmental conditions in greenhouse lettuce production increases the risk of N pollution and lower product quality. Agronomie 21:297–309

    Google Scholar 

  • De Walle FB, Sevenster J (1998) Agriculture and environment: minerals, manure and measures. Kluwer, Dordrecht, The Netherlands, 21 pp

    Google Scholar 

  • Delgado JA, Shaffer MJ, Hu C, Lavado RS, Cueto WJ, Joose P, Li X, Rimski KH, Follet R, Colon W, Sotomayor D (2006) A decade of change in nutrient management: a new nitrogen index. J Soil Water Conserv 61:71

    Google Scholar 

  • Delgado JA, Follet R (1998) Sap test to determine nitrate–nitrogen concentrations in aboveground biomass of winter cover crops. Commun Soil Sci Plant Anal 29:545–559

    CAS  Google Scholar 

  • Drost D, Koeing R (2001) Improving onion productivity and N use efficiency with a polymer coated nitrogen source. Western Management Conferences, Salt Lake City, UT

    Google Scholar 

  • Dumoulin J, Le Bot J, Mounier A, Fevre P (2002a) Azote du melon, la pratique du pilotage. Info CTIFL 185:45–48

    Google Scholar 

  • Dumoulin J, Le Bot J, Mounier A, Fevre P (2002b) Azote du melon, de la recherche à la pratique. Info CTIFL 184:48–53

    Google Scholar 

  • Ebrahim MKH, Aly MM (2005) Physiological Response of Wheat to Foliar Application of Zinc and Inoculation with some Bacterial Fertilizers. J Plant Nutrition 27:1859–1874. DOI: 10.1081/PLN-200026442

    Google Scholar 

  • Erdal I, Ertek A, Senyigit U, Koyuncu MA (2007) Combined effects of irrigation and nitrogen on some quality parameters of processing tomato. World J Agric Sci 3:57–62

    Google Scholar 

  • Errebhi M, Rosen CJ, Birong DE (1998) Calibration of a petiole sap nitrate test for irrigated “Russet Burbank” potato. Commun Soil Sci Plant Anal 29:23–35

    CAS  Google Scholar 

  • European Commission (1999) Agriculture, environment, rural development: facts and figures – a challance for agriculture. Office for official publications of the European communities, Luxembourg

    Google Scholar 

  • European Commission (1998) The implementation of council directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Office for official publications of the European communities, Luxembourg

    Google Scholar 

  • FAO Land and Plant Nutrition Management Service FAO (2000) http://www.fao.org/waicent/faoinfo/agricult/agl/agll/oldocsl.asp. Accessed 10/0972007 August 2009

  • Fagnano M, Merola G, De Luca S, Mori M, Zena A, Caputo R, Quaglietta Chiarandà F (2005) Ricerche Agronomiche per Sistemi Colturali Sostenibili in Italia Meridionale. In: Cicia G et al (eds) L’agricoltura biologica fuori dalla nicchia. Edizioni Scientifiche Italiane, Napoli

    Google Scholar 

  • Farneselli M (2008) Improving fertigation management in processing tomato. Doctoral Thesis, University of Perugia, Italy, 174 pp

    Google Scholar 

  • Farneselli M, Studstill DW, Simonne EH, Hochmuth RC, Hochmuth GJ, Tei F (2008). Depth and width of the wetted zone in a sandy soil after leaching drip-irrigation events and implications for nitrate-load calculation. Commun Soil Sci Plant Anal 39 (7&8)

    Google Scholar 

  • Farneselli M, Benincasa P, Guiducci M, Tei F (2007a) Validazione di metodi di misura dello stato nutrizionale azotato del pomodoro da industria. Italus Hortus 14:154

    Google Scholar 

  • Farneselli M, Benincasa P, Guiducci M, Tei F (2007b) Fertigation-irrigation frequency in processing tomato: effect on plant growth, N uptake and N leaching. Proceedings of 15th N Workshop “Towards a better efficiency in N use”, Lleida, Spain, 28–30 May 2007, pp 179–184

    Google Scholar 

  • Farneselli M, Simonne E, Studstill D, Tei F (2006a) Washing and/or cutting petioles reduces nitrate nitrogen and potassium sap concentrations in vegetables. J Plant Nutr 29:1975–1982

    CAS  Google Scholar 

  • Farneselli M, Studstill DW, Simonne EH, Hochmuth B (2006b) Depth and width of the wetted zone after leaching irrigations on a sandy soil. HortScience 41:508

    Google Scholar 

  • Feller C, Fink M (2002) Nmin target values for field vegetables. Acta Hortic 571:195–201

    Google Scholar 

  • Fink M, Scharpf HC (1992) Dünger-Dosierung im Freiland-Gemüsebau, Entscheidungsunterstützung durch; N-Expert“. Dtsch Gartenbau 46:1688–1690

    Google Scholar 

  • Francavigli R, Benedetti A (1995) The Italian project PANDA for sustainable agriculture and protection of the environment. Hrvat Vode 3(12):289–292

    Google Scholar 

  • Frankenberger WT Jr, Abdelmagid HM (1985) Kinetic parameters of nitrogen mineralization rates of leguminous crops incorporated into soil. Plant Soil 87:257–271

    Google Scholar 

  • Gallardo M, Thompson RB, Lopez-Toral JR, Fernandez MD, Granados R (2006) Effect of applied N concentration in a fertigated vegetable crop on soil solution nitrate and nitrate leaching loss. Acta Hortic 700:227–230

    Google Scholar 

  • Garnier P, Neel C, Aita C, Recous S, Lafolie F, Mary B (2003) Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur J Soil Sci 54:555–568

    CAS  Google Scholar 

  • Gary C (2003) Evaluation design and control of sustainable horticultural cropping systems. Acta Hortic 638:45–51

    Google Scholar 

  • Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799

    PubMed  CAS  Google Scholar 

  • German-Heins J, Flury J (2000) Sorption of brilliant blue FCF in soils as affected by PH and ionic strength. Geoderma 97:87–101

    CAS  Google Scholar 

  • Gianquinto G, Sambo P, Borsato D (2006) Determination of SPAD threshold values in order to optimise the nitrogen supply in processing tomato. Acta Hortic 700:159–166

    Google Scholar 

  • Gianquinto G, Sambo P, Bona A (2003) The use of SPAD-502 CHLOROPHYLL METER for dynamically optimising the nitrogen supply in potato crop: a methodological approach. Acta Hortic 627:217–224

    Google Scholar 

  • Giller KE, Cadisch G (1997) Driven by nature: a sense of arrival or departure. In: Cadisch G, Giller KE (eds) Driven by nature. Plant litter quality and decomposition. CAB International, Wallingford, UK, pp 393–399

    Google Scholar 

  • Gimenez C, Parra M, Diaz M (2001) Characterization of current management practices with high risk of nitrate contamination in agricultural areas of Southern Spain. Acta Hortic 506:73–80

    Google Scholar 

  • Goodlass G, Rahn CR, Shephered MA, Chalmers AG, Seeney FM (1997) The nitrogen requirement of vegetables; comparison of yield response models and recommendation systems. J Hortic Sci 72:239–254

    CAS  Google Scholar 

  • Goulding K (2000) Nitrate leaching from arable and horticultural land. Soil Use Manage 16:145–151

    Google Scholar 

  • Greenwood DJ, Verstraeten LMJ, Draycott A, Shutherland RA (1987) Response of winter wheat to N-fertilizer:dynamic model. Fertiliz Res 12:139–156

    Google Scholar 

  • Greenwood DJ, Kubo K, Burns IG, Draycott A (1989) Apparent recovery of fertilizer N by vegetable crops. Soil Sci Plant Nutr 35(3):367–381

    Google Scholar 

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • Greenwood DJ (1990) Production and productivity: the nitrate problem? Ann Appl Biol 117:209–231

    Google Scholar 

  • Greenwood DJ, Neeteson JJ (1992) High yield nutrient management systems and environmental constraints: the world scene. In: Scaife A (ed) Proceedings of the 2nd European Society for Agronomy Congress, Warwick, UK, pp 386–397

    Google Scholar 

  • Greenwood DJ, Rahn C, Draycott A, Vaidyanatha LV, Paterson C (1996) Modelling and measurement of the effects of fertilizer-N and crop residue incorporation on N-dynamics in vegetable cropping. Soil Use Manage 12:13–24

    Google Scholar 

  • Grignani C, Zavattaro L (2000) A survey on actual agricultural practices and their effects on the mineral nitrogen concentration of the soil solution. Eur J Agron 12:251–268

    CAS  Google Scholar 

  • Guerette V, Belec C, Tremblay N, Weier U, Scharpf H C (2000) N contribution from mineralization of vegetable crop residues. International society of horticultural sciences workshop “Toward an ecologically sound fertilization in field vegetable production,” 11–13 Sept 2000, Wageningen, The Netherlands

    Google Scholar 

  • Guiducci M, Bonciarelli U, Stagnari F, Benincasa P (2004) Total N supply and profit from several green manure crops. VIII Congress of the European Society of Agronomy, 11–15 July 2004, Copenhagen, DK

    Google Scholar 

  • Haberlandt U, Krysanova V, Bardossy A (2002) Assessment of nitrogen leaching from arable land in large river basins: Part II: Regionalisation using fuzzy rule based modelling. Ecol Model 150:277–294

    CAS  Google Scholar 

  • Harrison R, Silgram M (1998). Final report to UK Ministry of Agriculture Fisheries and Food (MAFF) on project NT1508 (cover crops). Includes Appendix: the mineralisation of nitrogen in cover crops – a review

    Google Scholar 

  • Hartz TK, Bendixen WE, Wierdsma L (2000) The value of presidedress soil nitrate testing as a nitrogen management tool in irrigated vegetables production. HortScience 35:651–656

    CAS  Google Scholar 

  • Hartz TK (2003) The assessment of soil and crop nutrient status in the development of efficient fertilizer recommendations. Acta Hortic 627:231–240

    Google Scholar 

  • Health Canada (1996) Guidelines for canadian drinking water quality (ed. Canadian Government Publisher). Canadian Government Publisher, Ottawa.

    Google Scholar 

  • Hebbar SS, Ramachandrappa BK, Nanjappa HV, Prabhakar M (2004) Studies on NKP drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur J Agron 21:117–127

    Google Scholar 

  • Heeb A (2005) Nitrogen form affects yield and taste of tomatoes. J Sci Food Agric 85:1409–1414

    Google Scholar 

  • Heffer P (2008) Assessment of fertilizer use by crop at the global level. International Fertilizer Industry Association, Paris, France, 6 pp

    Google Scholar 

  • Herencia JF (2007) Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield. Agron J 99:973–983

    CAS  Google Scholar 

  • Hochmuth GJ (1992) Concepts and practices for improving nitrogen management for vegetables. HortTechnology 2:121–125

    Google Scholar 

  • Hoel BO (2003) Chlorophyll meter readings in winter wheat: cultivar differences and prediction of grain protein content. Acta-Agric Scand Sect B, Soil Plant Sci 524:147–157

    Google Scholar 

  • Hoffmann M, Johnsson H (1999) A method for assessing generalised nitrogen leaching estimates for agricultural land. Environ Model Assess 4:35–44

    Google Scholar 

  • Huffman EC, Yang JY, Gameda S, de Jong R (2001) Using simulation and budget models to scale-up nitrogen leaching from field to region in Canada. Sci World 1:699–706

    Google Scholar 

  • Jabro DJ, Jemison JM, Fox RH, Frittion DD (1994) Predicting bromide leaching under field conditions using SLIM and MACRO. Soil Sci 157:215–223

    CAS  Google Scholar 

  • Janat M (2004) Assessment of nitrogen content, uptake, partitioning and recovery by cotton crop grown under surface irrigation and drip fertigation by using isotopic technique. Commun Soil Sci Plant Anal 35:2515–2535

    CAS  Google Scholar 

  • Janzen HH, Kucey RMN (1988) C, N, and S mineralization of crop residues as influenced by crop species and nutrient regime. Plant Soil 106:35–41

    CAS  Google Scholar 

  • Jimenez S, Ales JI, Lao MT, Plaza B, Perez M (2006) Evaluation of nitrate quick tests to improve fertigation management. Commun Soil Sci Plant Anal 37:2461–2469

    CAS  Google Scholar 

  • Jin Il Cheong (1996) Effects of slow-release fertilizer application on rice grain quality at different culture methods Korean-Journal-of-Crop-Science 41(3), 286–294

    Google Scholar 

  • Jones RD, Schwab AP (1993) Nitrate leaching and nitrite occurrence in a fine-texured soil. Soil Sci 4:272–282

    Google Scholar 

  • Justus M, Kopke U (1995) Strategies to reduce nitrogen losses via leaching and to increase pre-crop effects when growing faba beans, nitrogen leaching in ecological agriculture. Proceedings of an international workshop, Royal Veterinary and Agricultural University, Copenhagen, Denmark, pp 145–155

    Google Scholar 

  • Karaman MR, Saltali K, Ersahin S, Gulec H, Derici MR (2005) Modelling nitrogen uptake and potential nitrate leaching under different irrigation programs in nitrogen-fertilized tomato using the computer program NLEAP. Environ Monit Assess 101:249–259

    PubMed  CAS  Google Scholar 

  • Karitonas R (2003) Development of a nitrogen management tool for broccoli. Acta Hortic 627:125–129

    Google Scholar 

  • Kerft A, Zuber A (1978) On the physical meaning of the dispersion equation and its solutions for different initial bounary conditions. Chem Eng Sci 33:1471–1480

    Google Scholar 

  • Khah EM (2003) Effect of fertilizers on lettuce (Lactuca sativa) yield, physical and organoleptic properties. Adv Hortic Sci 17(1):47–57

    Google Scholar 

  • Knox E, Moody DW (1991) Influence of hydrology, soil proprieties and agricultural land use on nitrogen in groundwater. Soil Sci Soc Am J 6:77

    Google Scholar 

  • Kraft GJ, Stites W (2003) Nitrate impacts on groundwater from irrigated-vegetable systems in a humid north-central US sand plain, Agriculture. Ecosyst Environ 100:63–74

    CAS  Google Scholar 

  • Krishnapillai M, Sri Ranjan R (2009) Non-destructive monitoring of nitrate concentration in a laboratory flow experiment using time domain reflectometry (TDR). Environ Technol 30(1):101–109

    PubMed  CAS  Google Scholar 

  • Kristensen HL, Thorup-Kristensen K (2004) Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Sci Soc Am J 68:529–537

    CAS  Google Scholar 

  • Kucke M, Kleeberg P (1997) Nitrogen balance and soil nitrogen dynamics in two areas with different soil, climatic and cropping conditions. Eur J Agron 6:89–100

    Google Scholar 

  • Le Bot J, Jeanniquin B, Fabre R (2001) Impacts of N-deprivation on the yield and nitrogen budget of rockwool grown tomatoes. Agronomie 21:341–350

    Google Scholar 

  • Le Bot J, Adamowicz S, Robin P (1998) Modelling plant nutrition of horticultural crops: a review. Sci Hortic 74:47–82

    Google Scholar 

  • Lemaire G (2008) Diagnostic tool (s) for plant and crop N status. In vegetative stage. Theory and practice for crop N management. Eur J Agron 28:614–624

    CAS  Google Scholar 

  • Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. Diagnosis of nitrogen status in crops. In: Lemaire G (ed) Diagnosis of nitrogen status in crops. Springer, Berlin, pp 3–41

    Google Scholar 

  • Li Z (2003) Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous and Mesoporous Material 61:181–188

    CAS  Google Scholar 

  • Li J, Zhang J, Rao M (2004) Wetting pattern and nitrogen distributions as affected by fertigation strategies from a surface point source. Agric Water Manage 67:89–104

    Google Scholar 

  • Li J, Hu C, Delgado JA, Zhang Y, Ouyang Z (2007) Increasing nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in North China Plain. Agric Water Manage 89:137–147

    Google Scholar 

  • Lilburne L, Web T (2002) Effect of soil variability, within and between soil taxonomic units, on simulated nitrate leaching under arable farming. Australian Journal of Soil Research 40:1187–1199

    Google Scholar 

  • Linaje A, Munoz-Guerra L, Carrasco I (2005) Evaluation of the use of nitrification inhibitor DMPP on the risk of nitrate leaching in different crop system in Spain. In: Schroder JJ, Neeteson JJ (eds) N Management in Agrosystems in relation to the Water Frame Directive. Proceedings of 14th N Workshop, 2005, Maastricht, The Netherlands, pp 149–152

    Google Scholar 

  • Locascio SJL, Smajstrla AG (1995) Fertilizer timing and pan evaporation scheduling for drip irrigated tomato. In: Lamm FR (ed) Microirrigation for a changing world: conserving resources/preserving the environment 4-95. ASAE, Los Angeles, CA, pp 175–180

    Google Scholar 

  • Lord EI, Mitchell RD (1998) Effect of nitrogen inputs to cereals on nitrate leaching from sandy soils. Effect of nitrogen inputs to cereals on nitrate leaching from sandy soils. Soil Use Manage 14(2):78–83

    Google Scholar 

  • Lord EI, Johnson PA, Archer JR (1999) Nitrate sensitive areas: a study of large scale control of nitrate loss in England. Soil Use Manage 15:201–207

    Google Scholar 

  • Lord EI, Anthony S (2000) MAGPIE: a modelling framework for evaluating nitrate losses at national and catchment scales. Soil Use Manage 16:167–174

    Google Scholar 

  • Lord EI, Shepherd M, Silgram M, Goodlass G, Gooday R, Anthony A, Davison P, Hodgkinson R (2007). Investigating the effectiveness of NVZ Action Programme measures: development of a strategy for England. Final report for UK Defra project NIT18. 116pp + 11 Appendices. http://www.defra.gov.uk

  • Lorenz HP, Schaghecken J, Engl G, Maync A, Zegler J (1989) Ordnungsgemäβe Stikstoff-Versorgung im Freiland – Gem_sebau - KNS system. Rheinland Pfhalz: Ministerium fur Landwritschaf, Weinbau und Forsten ISSN 0931-9026 1089391-3000

    Google Scholar 

  • Lorenz OA, Tyler KB (2007) Plant tissue analysis of vegetable crops. vric.ucdavis.edu/veginfo/topics/fertilizer/tissueanalysis.pdf Accessed on August 2009

    Google Scholar 

  • Ma CH, Kalb T (2006) Development of starter solution technology as a balanced fertilization practice in vegetable production. Acta Hortic 700:173–185

    Google Scholar 

  • Macdonald AJ, Poulton PR, Howe MT, Goulding KWT, Powlson DS (2005) The use of cover crops in cereal-based cropping systems to control nitrate leaching in SE England. Plant Soil 273:355–373

    CAS  Google Scholar 

  • MAFF (2000) Fertiliser recommendations for agricultural and horticultural crops. MAFF reference book 209. HMSO, London

    Google Scholar 

  • Makowsky D, Guichard L, Beaudoin N, Aveline A, Lurent F (2005) A method to compare the accuracy of inidators of water pollution by nitrates. In: Schroder JJ, Neeteson JJ (eds) N management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 33–35

    Google Scholar 

  • Mantovani P, Soldano M, Moscatelli G, Tabaglio V (2005) Nitrification inhibitors addition to summer and autumn-applied pig slurry: effects on soil, water and atmosphere. In: Schroder JJ, Neeteson JJ (eds) N Management in Agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 152–157

    Google Scholar 

  • Marcelis L-FM, Heuvelink E, Goudriaan J (1998) Modelling biomass production and yield of horticultural crops: a review. Sci Hortic 74:83–111

    Google Scholar 

  • Mastrorilli M (1999) Modellizzazione. Sviluppo di modelli idrologici per ambienti mediterranei. Boll SISS 48(1):245–250

    Google Scholar 

  • Matthaus D, Gysi E (2001) Plant sap analysis in vegetables a tool to decide on nitrogen top dressing. Acta Hortic 506:93–102

    Google Scholar 

  • Maynard DN, Barker AV, Minotti PL, Peck NH (1976) Nitrate accumulation in vegetables. Adv Agron 28:71–117

    CAS  Google Scholar 

  • Meinardi CR, Beusen AHW, Bollen MJS, Klepper O, Willems WJ (1995) Vulnerability to diffuse pollution and average nitrate contamination of european soils and groundwater. Water Sci Tech 31:159–165

    CAS  Google Scholar 

  • Mempel H, Meyer J (2002) Environmental system analysis for horticultural crop production. Acta Hortic 638:45–51

    Google Scholar 

  • Meynard JM, Guichard L, Jeuffroy MH, Makowsky D (2002) Which decision support tools for the environmental management of nitrogen? Agronomie 22:817–829

    Google Scholar 

  • Mills HA, Jones JB (1996) Plant analysis handbook II. Macro-Micro Publishing, Athens, GA

    Google Scholar 

  • Mohammad MJ (2004) Squash yield, nutrient content and soil fertility parameters in response to methods of fertilizer application and rates of nitrogen fertigation. Nutr Cycl Agroecosyst 68:99–108

    Google Scholar 

  • Moreno F, Cayuela JA, Fernandez JE, Fernandez-Boy E, Murillo JM, Cabrera F (1996) Water balance and nitrate leaching in an irrigated maize crop in SW Spain. Agric Water Manage 32:71–83

    Google Scholar 

  • Müller T, Thorup-Kristensen K (2001) N-fixation of selected green manure plants in an organic crop rotation. Biol Agric Hortic 18:345–363

    Google Scholar 

  • Narayan MS (2002) Effect of sugar and nitrogen on the production of anthocyanin in cultured carrot (Daucus carota) cells. J Food Sci 67(1):84–86

    CAS  Google Scholar 

  • Neeraja G, Reddy KM, Reddy IP, Reddy YN (1999) Effect of irrigation and nitrogen on growth yield and yield attributes of rabi onion (Allium cepa) in Andhra Pradesh. Veg Sci 26:64–68

    Google Scholar 

  • Neeteson J, Langeveld J, de Haan J (2003) Nutrient balances in field vegetable production systems. Acta Hortic 627:13–23

    Google Scholar 

  • Neeteson JJ, Carton OT (2001) The environmental impact of nitrogen in field vegetable production. Acta Hortic 563:21–28

    Google Scholar 

  • Neeteson JJ, Booij R, Dijk W van, Haan J de, Pronk A, Brinks H, Dekker P, Langeveld H (2001) Projectplan Telen met toekomst. Appl Plant Res, Publicatie nr. 2, Lelystad

    Google Scholar 

  • Neeteson JJ (1995) Nitrogen management for intensively grown arable crops and field vegetables. In: Bacon PE (ed) Nitrogen fertilization in the environment. Marcel Dekker, New York, Chapter 8, pp 295–325

    Google Scholar 

  • Neeteson JJ (1989) Evaluation of the performance of three advisory methods for nitrogen fertilisation of sugar beet and potatoes. Neth J Agric Sci 37:143–155

    Google Scholar 

  • Neurkirchen D, Lammel J (2002) The chlorophyll content meter as an indicator for nutrient and quality management. Fertiliz Fert 2:89–109

    Google Scholar 

  • Normand B, Recous S, Vachaud G, Kengni L, Garino B (1997) Nitrogen-15 tracers combined with tensio-neutronic method to estimate the nitrogen balance of irrigated maize. Soil Sci Soc Am J 61:1508–1518

    CAS  Google Scholar 

  • Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16

    Google Scholar 

  • Olivier M, Goffart JP, Ledent JF (2006) Threshold value for chlorophyll meter as decision tool for nitrogen management of potato. Agron J 98:496–506

    CAS  Google Scholar 

  • Olson SM, Simonne EH (eds) (2006) Vegetable production handbook for Florida. University of Florida, IFAS Extension, Gainesville, FL

    Google Scholar 

  • Osborne SL (2006) Starter nitrogen fertilizer impact on soybean yield and quality in the Northern Great Plains. Agron J 98:1569–1574

    CAS  Google Scholar 

  • Owen J, Scharpf HC, Weier U, Laurence H, Tremblay N (2003) Extension of practical solutions for efficient nitrogen management of vegetables crops: a comprehensive guide developed using a unique approach. Acta Hortic 627:161–163

    Google Scholar 

  • Paschold J, Artelt B, Hermann G (2003) Influence of N-nutritional and catch crops on the yield of asparagus (Asparagus officinalis L.) and N-leaching. Acta Hortic 627:57–64

    Google Scholar 

  • Paschold J, Artelt B, Hermann G (2001) Influence of Nmin target values on Fertilisers need, yield and Nmin residues in Asparagus. Acta Hortic 563:53–58

    Google Scholar 

  • Paschold J, Scheunemann Ch (1989) Controlling output level in the white cabbage by assessing N-fertilization on the basic of soil and plant analyses. Acta Hortic 260:313–328

    Google Scholar 

  • Pasda G, Hahndel R, Zerella W (2001) Effect of fertilizers with the new nitrification inhibitor DMPP (3.4 Dimethylpirazole phosphate) on yield and quality of agricultural and horticultural crops. Biol Fertil Soils 34:85–97

    CAS  Google Scholar 

  • Pavlou GC (2007) Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci Hortic 111(4):319–325

    CAS  Google Scholar 

  • Peltonen J (1994) Effect of nitrogen fertilizers differing in release characteristics on the quantity of storage proteins in wheat. Cereal-Chem 71:1–5

    CAS  Google Scholar 

  • Phene CJ (1999) Efficient irrigation systems and irrigation scheduling for processing tomato: the challange. Acta Hortic 487:479–485

    Google Scholar 

  • Piekielek WP, Fox RH (1992) Use of a chlorophyll meter to predict sidedress nitrogen requirements for maize. Agron J 84:59–65

    CAS  Google Scholar 

  • Pimpini F, Gianquinto G, Sambo P (2005) Organic vegetable production: evolution, base principles and quality of products. Italus Hortus 12(4):31–44

    Google Scholar 

  • Prasad M, Simmons P, Maher MJ (2004) Release characteristics of organic fertilisers. Acta Hortic 644:163–170

    Google Scholar 

  • Rabbinge R, Rossing W (2000) Meeting the demand for ecological modernization in horticulture: the role of systems approaches. Acta Hortic 525:115–121

    Google Scholar 

  • Radersma S, van Evert F (2005) Crop related indicators: is the crop able to tell the farmers what to do? In: Schroder JJ, Neeteson JJ (eds) N management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 247–249

    Google Scholar 

  • Radersma S, van Geel W, Smit A, van Wess N (2005) Decision support systems for nitrogen fertilization to maintain production and reduce potential N-Losses: main questions ad answers in the Netherlands. In: Schroder JJ, Neeteson JJ (eds) N management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N Workshop, 2005, Maastricht, The Netherlands, pp 266–269

    Google Scholar 

  • Rahn CR, Bending GD, Lillywhite RD, Turner MK (2003) Novel techniques to reduce environmental N pollution from high nitrogen content crop residues. Acta Hortic 627:105–111

    Google Scholar 

  • Rahn C (2002) Management strategies to reduce nutrient losses from vegetables crops. Acta Hortic 571:19–25

    Google Scholar 

  • Rahn C, DeNeve S, Bath B, Bianco V, Dachler M, Cordovil C, Fink M, Gysi C, Hofman G, Koivunen M, Panagiotopoulos L, Poulain D, Ramos C, Riley H, Setatou H, Sorensen J, Titulaer H, Weier U (2001) A comparison of fertiliser recommendation systems for cauliflowers in Europe. Acta Hortic 563:39–45

    Google Scholar 

  • Rahn CR, Greenwood DJ, Draycott A (1996) Prediction of nitrogen fertilizer requirement with HRI WELL_N Computer Model. Progress in Nitrogen Cycling. Proceedings of the8th nitrogen fixation workshop, University of Ghent, Belgium, 5–7 Sept 1994 Kluwer, Dordrecht, pp 255–258

    Google Scholar 

  • Rahn CR, Paterson C, Vaidyanatha LV (1993) Improving the use of nitrogen in brassicae rotations. Acta Hortic 339:207–218

    Google Scholar 

  • Rahn CR, Vaidyanathan LV, Paterson CD (1992) Nitrogen residues from Brassica crops. Aspects Appl Biol 30:263–270

    Google Scholar 

  • Rajput TBS, Patel N (2006) Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric Water Manage 79:293–311

    Google Scholar 

  • Ramos C, Agut A, Lidon A (2002) Nitrate leaching in important crops of the Valencian community region (Spain). Environ Pollut 118:215–223

    PubMed  CAS  Google Scholar 

  • Randall GW, Goss MJ (2001) Nitrogen losses to surface water through subsurface, tile drainage. In: Follet RF, Hatfield JL (eds) Nitrogen in the environment: sources, problems and management. Elsevier Science, Amsterdam, pp 95–122

    Google Scholar 

  • Remie B, Groenwold K, Rovres J, Clevering O, Pijnenburg H, Hekkert M, Lagenveld H (2003) Nutrient management on vegetables farms: what will be the future? Acta Hortic 627:275–282

    Google Scholar 

  • Riley H, Guttormsen G (1999) Alternative equations for critical N-concentration in cabbage. Acta Hortic 506:123–128

    Google Scholar 

  • Romic D, Romic M, Borosic J, Poljak M (2003) Mulching decreases nitrate leaching in bell pepper (Capsicum annuum L.) cultivation. Agric Water Manage 60(2):87–97

    Google Scholar 

  • Rühlmann J (1999) Calculation of net nitrogen mineralization from the decomposable soil organic matter pool. Acta Hortic 506:167–174

    Google Scholar 

  • Salo T, Raisio R, Tiilikkala K (2001) Effectiveness of fertilizer recommendation in Finnish carrot and pea production. Acta Hortic 506:37–40

    Google Scholar 

  • Schaller RG (2000) Nitrogen nutrition and flavour compounds of carrots (Daucus carota L) cultivated in Mitscherlich pots. J Sci Food Agric 80:49–56

    CAS  Google Scholar 

  • Scharpf HC (1991a) Dungenfenster: Fruhwarnsysteme fur dien-VersotgungLnad Und Forst, Heft, 10:S.24

    Google Scholar 

  • Scharpf HC (1991b) Stickstoffdünung im Gemüsebau., AID-Heft 1223. Bonn; Auswertungs-undInformationdienst für Ernährung, Landwirstschaft und Forsten e.V

    Google Scholar 

  • Schenk MK (2006) Nutrient efficiency of vegetable crops. Acta Hortic 700:25–38

    Google Scholar 

  • Schroder J, Neeteson J, Oenema O, Struik P (2000) Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop Res 66:151–164

    Google Scholar 

  • Scudlark JR, Russell KM, Galloway JN, Church TM, Keene WC (1998) Organic nitrogen in precipitation at the Mid-Atlantic U.S. coast – methods evaluation and preliminary measurements. Atmos Environ 32:1719–1728

    CAS  Google Scholar 

  • Seddaiu G, Iezzi G, Roggero PP (2007) Fissazione e trasferimento dell’azoto fissato dal favino al frumento duro in successione. Atti del “XXXVII Convegno Nazionale della Società Italiana di Agronomia”, 13–14 Settembre 2007, Catania, Italy

    Google Scholar 

  • Sexton P, Carroll J (2002) Comparison of SPAD chlorophyll meter readings vs. petiole nitrate concentration in sugarbeet. J Plant Nutr 25:1975–1986

    CAS  Google Scholar 

  • Shaffer MJ, Delgado JA (2002) Essentials of a national nitrate leaching index assessment tool. J Soil Water Conserv 57:327–335

    Google Scholar 

  • Shaffer MJ, Halvardson DA, Pierce FC (1991) Nitrate leaching and economic analysis package (NLEAP): model description and application. In: Follet RF, Keeney DR, Cruse RM (eds) Managing nitrogen for groundwater quality and farm profitability. ASA, SSA and CSSA, Madison, WI, pp 285–322

    Google Scholar 

  • Sibley KJ (2008) Development and use of an automated on-the-go soil nitrate mapping system. Doctoral Thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Sidat Y, Upendra M, Bharat P (2000) Fresh market tomato yield and soil nitrogen as affected by tillage, cover cropping and nitrogen fertilisation. HortScience 35:1258–1262

    Google Scholar 

  • Silber A, Xu G, Wallach R (2003) High irrigation frequency: the effect on plant growth and on uptake of water and nutrients. Acta Hortic 627:89–96

    Google Scholar 

  • Silgram M, Hatley D, Gooday R (2007) IRRIGUIDE: a decision support tool for drainage estimation and irrigation scheduling. Proceedings of the 6th biennial conference of the European federation of IT in agriculture (EFITA)/world congress on computing in agriculture (WCCA) 2007 joint conference “Environmental and rural sustainability”, Glasgow, UK, 2–5 July 2007

    Google Scholar 

  • Silgram M (2005) Effectiveness of the nitrate sensitive areas scheme (1994–2003). Final report to UK Defra under project M272/56. 22pp. http://www.defra.gov.uk. Accessed on August 2009

  • Silgram M, Williams A, Waring R, Neumann I, Hughes A, Mansour M (2004) Effectiveness of the nitrate sensitive areas scheme in reducing groundwater concentrations. Q J Environ Geol Hydrogeol 38:117–127

    Google Scholar 

  • Silgram M, Williams A, Waring R, Neumann I, Hughes A, Gaus I, Mansour M (2003) Assessment of the effectiveness of the nitrate sensitive areas scheme in reducing nitrate concentrations in groundwater. Technical report for UK Environment Agency R&D Project P2-267/2/TR. ISBN 1844320758. Environment Agency, Bristol, UK. 90 pp + 2 Appendices

    Google Scholar 

  • Silgram M, Chambers BJ (2002) The effects of repeated straw incorporation on soil mineral nitrogen supply, fertiliser N requirements and nitrate leaching losses. J Agric Sci (Cambridge) 139(2):115–127

    CAS  Google Scholar 

  • Silgram M, Shepherd M (1999) The effects of cultivation on soil nitrogen mineralisation. Adv Agron 65:267–311

    Google Scholar 

  • Simonne EH, Hochmuth GJ (2006) Soil and fertilizer management for vegetable production in Florida. In: Olson SM, Simonne EH (eds) Vegetable production handbook for Florida, 2005/2006. Vance Publishing, Lenexa, KS, pp 3–15

    Google Scholar 

  • Simonne EH, Studstill DW, Hochmuth RC (2006) Understanding water movement in mulched bed on sandy soils: an approach to ecologically sound fertigation in vegetable production. Acta Hortic 700:173–178

    Google Scholar 

  • Simonne EH, Studstill DW, Hochmuth RC, Jones JT, Starling CW (2005) On-farm demonstration of soil water movement in vegetables grown with plasticulture. Electronic Database Info. System, HS 1008. http://edis.ifas.ufl.edu/HS251

  • Simonne EH, Studstill D, Hochmuth RC, McAvoy G, Dukes MD, Olson SM (2003) Visualization of water movement in mulched beds with injections of dye with drip irrigation. Proc Fla State Hortic Soc 116:88–91

    Google Scholar 

  • Singandhupe RB, Rao GGSN, Patil NG, Brahmanand PS (2003) Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur J Agron 19:327–340

    Google Scholar 

  • Smit A, Hann de J, Zwart K (2005) Farming for the future; can arable and horticultural on sandy soils comply with the EU nitrate directive. Results from the nucleus farms Vredepeel and Meterik. Telen net toekomst raposrt, Plant Research International, Wageningen, The Netherlands.

    Google Scholar 

  • Smit AB, Stoorvogel JJ, Wossink GAA (2000) A methodology to support the decision to invest in spatially variable nitrogen fertilisation. Neth J Agric Sci 48(3–4):273–290

    Google Scholar 

  • Smith FW, Loneragan JF (1997) Interpretation of plant analysis: concepts and principles. In: Reuter DJ, Robinson JB (eds) Plant analysis: an interpretation manual, 2nd edn. Commonwealth Scientific and industrial research organization, Collingwood, Victoria, pp 3–33

    Google Scholar 

  • Soler-Rovira J, Aroyo-Sanz J, Soler-Rovira P (2005) Nitrogen flow analysis in the Spanish agriculture and flow production system. In: Schroder JJ, Neeteson JJ (eds) N Management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 36–39

    Google Scholar 

  • Souza CF, Folegatti MV, Matsura EE, Or D (2006) Time domain reflectometry (TDR) calibration for estimating soil solution concentration. Engenharia Agricola 28(1):282–291

    Google Scholar 

  • Stenger R, Priesack E, Barkle G, Sperr G (1999) A tool for simulating nitrogen and carbon dynamics in the soil-plant atmosphere system. In: Tomer M, Robinson, M, Gielen G (eds) Proceedings of the technical session No 20. New Zealand Land Treatment Collective, New Plymouth, NZ, pp 19–28

    Google Scholar 

  • Stevens CJ, Quinton John N (2009) Pollution swapping in arable agricultural systems. Crit Rev Environ Sci Technol 39(6):478–520

    CAS  Google Scholar 

  • Sulas L, Canu S, Muresu R (2007) Azotofissazione e sovescio di una coltura di favino per la gestione della fertilità in sistemi cerealicolo-foraggeri biologici mediterranei. 3rd Workshop GRAB-IT, Roma

    Google Scholar 

  • Suprayago D, Van Noordwijk M, Hairiah K, Cadisch G (2002) The inherent ‘safety-net’ of an Acrisol: measuring and modelling retarded leaching of mineral nitrogen. Eur J Soil Sci 53(2):185–194

    Google Scholar 

  • Sweeney D, Graetz D, Bottcher A, Locascio S, Campbell K (1987) Tomato yield and nitrogen recovery as influenced by irrigation method, nitrogen source and mulch. HortScience 22:27–29

    Google Scholar 

  • Swiader J, Moore A (2002) SPAD-chlorophyll response to nitrogen fertilization and evaluation of nitrogen status in dryland and irrigated pumpkins. J Plant Nutr 25:1089–1100

    CAS  Google Scholar 

  • Taber HG (2001) Petiole sap nitrate sufficiency values for fresh market tomato production. J Plant Nutr 24:945–959

    CAS  Google Scholar 

  • Tei F, Benincasa P, Guiducci M (2003) Critical nitrogen concentration in lettuce. Acta Hortic 627:187–194

    Google Scholar 

  • Tei F, Benincasa P, Guiducci M (2002) Critical nitrogen concentration in processing tomato. Eur J Agron 18:45–55

    CAS  Google Scholar 

  • Tei F, Benincasa P, Guiducci M (2000) Effect of nitrogen availability on growth and nitrogen uptake in lettuce. Acta Hortic 533:385–392

    Google Scholar 

  • Tei F, Benincasa P, Guiducci M (1999) Nitrogen fertilisation on lettuce, processing tomato and sweet pepper: yield, nitrogen uptake and the risk of nitrate leaching. Acta Hortic 506:61–67

    Google Scholar 

  • Thompson RB, Granado M, Gasquez J, Gallardo M, Giménez C (2005) Nitrate leaching losses from a recently developed intensive horticultural system in a previously disadvantaged region. In: Schroder JJ, Neeteson JJ (eds) N management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 420–423

    Google Scholar 

  • Thompson RB, Gallardo M, Giménez C (2002) Assessing risk of nitrate leaching from the horticultural industry of Almeria, Spain. Acta Hortic 571:243–245

    Google Scholar 

  • Thorup-Kristensen K, Pedersen L (2006) Cropping systems with winter wheat or spring wheat? Root growth, catch crops, nitrogen leaching, and baking quality. Proceedings of European joint organic congress, 30–31 May 2006, Odense, DK.

    Google Scholar 

  • Thorup-Kristensen K, Magrid J, Stroumann Jensen L (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302

    Google Scholar 

  • Thorup-Kristensen K (2001) Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 230:185–195

    CAS  Google Scholar 

  • Thorup-Kristensen K, Van der Boogard R (1999) Vertical and horizontal development of the root system of carrots following green manure. Plant Soil 212:145–153

    CAS  Google Scholar 

  • Thorup-Kristensen K, Sørensen JN (1999) Soil nitrogen depletion by vegetable crops with variable root growth. Acta Agric Scand, Sect B – Soil Plant Sci 49:92–97

    Google Scholar 

  • Thorup-Kristensen K, Nielsen NE (1998) Modelling and measuring the effect of nitrogen catch crops on the nitrogen supply for succeeding crops. Plant Soil 203:79–89

    CAS  Google Scholar 

  • Thorup-Kristensen K (1994) The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fertliz Res 37:227–234

    CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    PubMed  CAS  Google Scholar 

  • Tosti G (2008) Green manure and nitrogen fertility management in organic farming systems. Doctoral Thesis, University of Perugia, Italy

    Google Scholar 

  • Tosti G, Boldrini A, Benincasa P, Tei F, Guiducci M (2008) The N Nutritional Status of Processing Tomato Grown after Green Manures. Proceedings of the 10th congress of the European society for agronomy “Agriculture as resource for energy and environmental preservation-multifunctional agriculture”, Bologna, Italy, 15–18 Sept 2008

    Google Scholar 

  • Tremblay N, Belec C (2005) Strategies for environmental responsible N management using state of the art crop sensing tools. In: Schroder J.J. and Neeteson J.J (eds) N management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 279–281

    Google Scholar 

  • Tremblay N, Scharpf HC, Weier U, Laurence H, Owen J (2003) Nitrogen management in field vegetables. Ed Agriculture et Agroalimentaire Canada, Cat. No. A42-92/2001E-INISBN 0-662-30494-2

    Google Scholar 

  • Uhte R (1995) Integration of ecological aspects within economical decision support models for vegetable crop production. Ber Landwirtsch 73:33–50

    Google Scholar 

  • University of Minnesota (1996) Nitrate test offers economic, environmental benefits for potato farmers. News information, Minnesota’s Future 64

    Google Scholar 

  • US Environmental Protection Agency (1989). National Primary and Secondary Drinking Water Regulations, proposed Rule, Fedd. Reg., 54: 22077. USEPA, Washington, DC

    Google Scholar 

  • Van Alphen BJ, Stoorvogel JJ (2000) A methodology for precision nitrogen fertilization in high-input farming systems. Precision Agric 2(4):319–332

    Google Scholar 

  • Van Dijk W, Smit AL (2006) How to meet the EC-nitrate directive in Dutch vegetable growing? Acta Hortic 700:197–204

    Google Scholar 

  • Vazquez N, Pardo A, Suso ML, Quemada M (2006) Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric Ecosyst Environ 112:313–323

    CAS  Google Scholar 

  • Vazquez N, Pardo A, Suso ML, Quemada M (2005) A methodology for measuring drainage and nitrate leaching in unevenly irrigated vegetables crops. Plant Soil 269:297–308

    CAS  Google Scholar 

  • Vigil MF, Kissel DE (1991) Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci Soc Am J 55:757–761

    CAS  Google Scholar 

  • Visser de P, Voogt W, Heinen M, Assinck F (2005) Reduction of nitrate from intensive arable cropping y specific crop management. In: Schroder JJ, Neeteson JJ (eds) N Management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands

    Google Scholar 

  • Vitosh ML, Silvia GH (1996) Factors affecting potato petiole sap nitrate tests. Commun Soil Sci Plant Anal 27:1137–1152

    CAS  Google Scholar 

  • Vitosh ML, Silvia GH (1994) A rapid petiole sap nitrate–nitrogen test for potatoes. Commun Soil Sci Plant Anal 25:183–190

    CAS  Google Scholar 

  • Vos J, Vereijken P, van der Werf A (2005) Managing N by catch crops and buffer strips. In: Schroder JJ, Neeteson JJ (eds) N Management in agrosystems in relation to the Water Frame Directive. Proceedings of 14th N workshop, 2005, Maastricht, The Netherlands, pp 225–227

    Google Scholar 

  • Vos J, van der Putten P (2004) Nutrient cycling in cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II Effect of catch crop on nitrate leaching in autumn and winter. Nutr Cycl Agroecosyst 70:23–31

    CAS  Google Scholar 

  • Wehrmann J, Scharpf H (1986) The Nmin method-an aid to integrating various objectives of nitrogen fertilization. Z Pflanzenernaerh Bodenk 149:337–344

    Google Scholar 

  • Weier U, van Riesen U, Scharpf HC (2001) Nmin-N-plots: a system to estimate the amount of nitrogen top dressing of vegetables. Acta Hortic 563:47–52

    Google Scholar 

  • Westerveld SM, McKeown AW, Scott-Dupree CD (2003) Chlorophyll and nitrate meters as nitrogen monitoring tools for selected vegetables in Southern Ontario. Acta Hortic 627:259–266

    Google Scholar 

  • Whitmore AP (1996) Modellling the release and loss of nitrogen after vegetable crops. Neth J Agric Sci 44:73–86

    Google Scholar 

  • Wiesler F, Bauer M, Kamh M, Engels Th, Reusher S (2002) The crops as indicators for side-dress nitrogen demand in sugar beet production, limitations and perspectives. J Plant Nutr Soil Sci 165:93–99

    CAS  Google Scholar 

  • Zhang YM, Hu CS, Zhang JB, Chen DL, Li XX (2005) Nitrate leaching in an irrigated wheat-maize rotation field in the North China Plain. Pedosphere 15:196–203

    Google Scholar 

Download references

Acknowledgements

The authors thank the following researchers for useful suggestions and valuable information on several aspects of the topic reported in this review: Professor P Sequi and Dr. A. Benedetti, CRA-Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, ISNP, Roma, Italy; Dr.M. Pagliai, Centro di ricerca per l’agrobiologia e la Pedologia, ISSDS, Firenze, Italy; Dr. M. Mastrorilli, Istituto Sperimentale Agronomico, ISA, Bari; Dr. A. Rosati, CRA-Centro di ricerca per l’olivicoltura e l’industria olearia, Spoleto, Italy; Dr. V. Magnifico, CRA-Centro Ricerca per l’Orticultura, Pontecagnano, Italy; Dr. Jose Antonio Diez Lopez, Centro de Ciencias Mediambientales (CSIC) Departamento de Contaminacion ambiental. Control de la contaminacion nitrogenada, Madrid, Spain; Frances Domingo, Instituto de Investigacion y Tecnologia Agraroalimentaria (IRTA) Estacion Experimental Mas Badia, Gerona, Spain; Dr. Carlos Ramos Monpo, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain; Dr. Rod Thompson, Depto. Producion Vegetal, Universidad de Almeria, Spain; Dr. C. Gary, CIRAD Montpellier, France; Dr. J. Le Bot and Dr. Stéphane Bellon, INRA Avignon, France; Dr. Paul Robin, INRA-ENSAM, Montpellier, France; C. Reynal, CTIFL, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Agostini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Agostini, F., Tei, F., Silgram, M., Farneselli, M., Benincasa, P., Aller, M.F. (2010). Decreasing Nitrate Leaching in Vegetable Crops with Better N Management. In: Lichtfouse, E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8741-6_6

Download citation

Publish with us

Policies and ethics