Skip to main content

Impacts of Climate Change on Terrestrial Ecosystems and Adaptation Measures for Natural Resource Management

  • Chapter
  • First Online:
Changing Climates, Earth Systems and Society

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

Emissions from motor vehicles, power plants, deforestation, and other human sources are warming the Earth and damaging ecosystems and human well-being. Field observations from around the world have detected significant changes in terrestrial ecosystems and attributed them to climate change rather than other factors. Climate change has shifted the ranges of plants, animals, and biomes, altered the timing of life events such as plant flowering and animal migration, increased wildfires, and driven 75 frog and other amphibian species to extinction. Projections of future climate change and analyses of vulnerability indicate that unless we substantially reduce greenhouse gas emissions, further warming may overwhelm the adaptive capacity of many species and ecosystems. Climate change could convert extensive land areas from one biome to another, alter global biogeochemical cycles, and isolate or drive numerous species to extinction. Natural resource managers are developing adaptation measures to help species and ecosystems cope with the impacts of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612.

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, et al. (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684.

    Google Scholar 

  • Arctic Climate Impact Assessment (ACIA) (2004) Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Alexander MA, Eischeid JK (2001) Climate variability in regions of amphibian declines. Conserv Biol 15:930–942.

    Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104:6550–6555.

    CAS  Google Scholar 

  • Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Chang Biol 15:1491–1510.

    Google Scholar 

  • Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411:183–186.

    CAS  Google Scholar 

  • Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Natl Acad Sci USA 105:4197–4202.

    CAS  Google Scholar 

  • Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: Can arctic life count on evolution? Integr Comp Biol 44:140–151.

    Google Scholar 

  • Berthold P, Gwinner E, Sonnenschein E (2003) Avian Migration. Berlin, Germany: Springer.

    Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Glob Chang Biol 12:862–882.

    Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, et al. (2009) Fire in the Earth system. Science 324:481–484.

    CAS  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148.

    CAS  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modelling the recent evolution of global drought and projections for the 21st century with the Hadley Centre climate model. J Hydrometeorol 7:113–1125.

    Google Scholar 

  • Burkett VR, Wilcox DA, Stottlemyer R, Barrow W, Fagre D, Baron J, Price J, Nielsen JL, Allen CD, Peterson DL, et al. (2005) Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications. Ecol Complex 2:357–394.

    Google Scholar 

  • Burrowes PA, Joglar RL, Green DE (2004) Potential causes for amphibian declines in Puerto Rico. Herpetologica 60:141–154.

    Google Scholar 

  • Butler CJ (2003) The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. Ibis 145:484–495.

    Google Scholar 

  • Cech P, Pepin S, Körner C (2003) Elevated CO2 reduces sap flux in mature deciduous forest trees. Oecologia 137:258–268.

    Google Scholar 

  • Chambers JQ, Fisher JI, Zeng H, Chapman EL, Baker DB, Hurtt GC (2007) Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forests. Science 318:1107.

    CAS  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA 100:5852–5857.

    CAS  Google Scholar 

  • Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514.

    CAS  Google Scholar 

  • Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones PD, Xie P (2004) The recent Sahel drought is real. Int J Climatol 24:1323–1331.

    Google Scholar 

  • Daly C, Bachelet D, Lenihan JM, Neilson RP, Parton W, Ojima D (2000) Dynamic simulation of tree–grass interactions for global change studies. Ecol Appl 10:449–469.

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151.

    Google Scholar 

  • Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268.

    Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Chang Biol 8:679–693.

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691.

    CAS  Google Scholar 

  • Fraser WR, Trivelpiece WZ, Ainley DG, Trivelpiece SG (1992) Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming. Polar Biol 11:525–531.

    Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030.

    CAS  Google Scholar 

  • Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31:L18211. doi:10.1029/2004GL020876.

    Google Scholar 

  • Golding N, Betts R (2008) Fire risk in Amazonia due to climate change in the HadCM3 climate model: Potential interactions with deforestation. Glob Biogeochem Cycles 22:GB4007. doi:10.1029/2007GB003166.

    Google Scholar 

  • Gonzalez P (2001) Desertification and a shift of forest species in the West African Sahel. Clim Res 17:217–228.

    CAS  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr.

    Google Scholar 

  • Green K, Pickering CM (2002) A potential scenario for mammal and bird diversity in the Snowy Mountains of Australia in relation to climate change. In C Körner, E Spehn (Eds), Mountain Biodiversity: A Global Assessment. London: Parthenon Publishing.

    Google Scholar 

  • Griffith B, Scott JM, Adamcik R, Ashe D, Czech B, Fischman R, Gonzalez P, Lawler J, McGuire AD, Pidgorna A (2009) Climate change adaptation for the US National Wildlife Refuge System. Environ Manage 44:1043–1052.

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: The rear edge matters. Ecol Lett 8:461–467.

    Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr doi: 10.1111/j.1466–8238.2010.00558.X 11:485–495.

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Thomas CD (2005) A northward shift of range margins in British Odonata. Glob Chang Biol 11:502–506.

    Google Scholar 

  • Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–170.

    Google Scholar 

  • Hughes CL, Hill JK, Dytham C (2003) Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc R Soc Lond B Biol Sci 270:S147–S150.

    Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97:1630–1633.

    CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001a) Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001b) Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007a) Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007b) Climate Change 2007: Impacts, Adaptation, and Vulnerability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007c) Climate Change 2007: Mitigation of Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones C, Lowe J, Liddicoat S, Betts R (2009) Committed terrestrial ecosystem changes due to climate change. Nat Geosci 2:484–487.

    CAS  Google Scholar 

  • Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophy Res Lett 33:L09703. doi:10.1029/2006GL025677.

    Google Scholar 

  • Kirkbride MP (1995) Relationships between temperature and ablation on the Tasman Glacier, Mount Cook National Park, New Zealand. N Z J Geol Geophys 38:17–27.

    Google Scholar 

  • Knowles N, Dettinger MD, Cayan DR (2006) Trends in snowfall versus rainfall in the western United States. J Clim 19:4545–4559.

    Google Scholar 

  • Kullman L, Öberg L (2009) Post-little ice age tree line rise and climate warming in the Swedish Scandes: A landscape ecological perspective. J Ecol 97:415–429.

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990.

    CAS  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836.

    Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771.

    CAS  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382.

    Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257.

    CAS  Google Scholar 

  • Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883.

    CAS  Google Scholar 

  • Menzel A, Dose V (2005) Analysis of long-term time-series of beginning of flowering by Bayesian function estimation. Meteorologische Zeitschrift 14:429–434.

    Google Scholar 

  • Menzel A, Sparks T, Estrella N, Roy DB (2006) Geographic and temporal variability in phenology. Glob Ecol Biogeogr 15:498–504.

    Google Scholar 

  • Midgley GF, Hannah L, Millar D, Rutherford MC, Powrie LW (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451.

    Google Scholar 

  • Millennium Ecosystem Assessment (2006) Ecosystems and Human Well-Being: Current State and Trends. Washington, DC: Island Press.

    Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264.

    CAS  Google Scholar 

  • National Academy of Sciences of the USA (NAS) (2008) Ecological Impacts of Climate Change. Washington, DC: National Academies Press.

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563.

    CAS  Google Scholar 

  • Nitschke CR, Innes JL (2008) Integrating climate change into forest management in South-Central British Columbia: An assessment of landscape vulnerability and development of a climate-smart framework. For Ecol Manage 256:313–327.

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, et al. (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056.

    CAS  Google Scholar 

  • Overpeck JT, Whitlock C, Huntley B (2003) Terrestrial biosphere dynamics in the climate system: Past and future. In K Alverson, R Bradley, T Pedersen (Eds), Paleoclimate, Global Change, and the Future. Berlin, Germany: Springer.

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968–972.

    CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.

    CAS  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583.

    CAS  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140.

    Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629.

    CAS  Google Scholar 

  • Phillips OL, Martínez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, et al. (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774.

    CAS  Google Scholar 

  • Pitelka LF, Gardner RH, Ash J, Berry S, Gitay H, Noble IR, Saunders A, Bradshaw RHW, Brubaker L, Clark JS, Davis MB (1997) Plant migration and climate change. Am Sci 85:464–473.

    Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sanchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167.

    CAS  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 58:501–517.

    Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132.

    CAS  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 104:10288–10293.

    CAS  Google Scholar 

  • Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camacho A, Root TL, Sala OE, Schneider SH, Ashe DM, Clark JR, Early R, Etterson JR, Fielder ED, Gill JL, Minteer BA, Polasky S, Safford HD, Thompson AR, Vellend M (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721–9724.

    CAS  Google Scholar 

  • Ron SR, Duellman WE, Coloma LA, Bustamante MR (2003) Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. J Herpetol 37:116–126.

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on animals and plants. Nature 421:57–60.

    CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357.

    CAS  Google Scholar 

  • Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer JG, Held AC, Pereira JMC, van het Bolscher M (2008) Global wildland fire emissions from 1960 to 2000. Global Biogeochem Cycles 22:GB2002. doi: 10.1029/2007GB003031.

    Google Scholar 

  • Scott JM, Griffith B, Adamcik RS, Ashe DM, Czech B, Fischman RL, Gonzalez P, Lawler JJ, McGuire AD, Pidgorna A (2008) National Wildlife Refuges. In U.S. Climate Change Science Program. Preliminary Review of Adaptation Options for Climate-Sensitive Ecosystems and Resources. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Simmons RE, Barnard P, Dean WRJ, Midgley GF, Thuiller W, Hughes G (2004) Climate change and birds: Perspectives and prospects from southern Africa. Ostrich 75:295–308.

    Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Chang Biol 14:2015–2039.

    Google Scholar 

  • Stervander M, Lindstrom K, Jonzen N, Andersson A (2005) Timing of spring migration in birds: Long-term trends, North Atlantic Oscillation, and the significance of different migration routes. J Avian Biol 36:210–221.

    Google Scholar 

  • Stirling I, Lunn NJ, Iacozza J (1999) Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic 52:294–306.

    Google Scholar 

  • Thomas DSG, Leason HC (2005) Dunefield activity response to climate variability in the southwest Kalahari. Geomorphology 64:117–132.

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148.

    CAS  Google Scholar 

  • Thompson R, Clark RM (2008) Is spring starting earlier? The Holocene 18:95–104.

    Google Scholar 

  • Thuiller W, Midgley GF, Hughes GO, Bomhard B, Drew G, Rutherford MC, Woodward FI (2006) Endemic species and ecosystem sensitivity to climate change in Namibia. Glob Chang Biol 12:759–776.

    Google Scholar 

  • Tidemann CR, Vardon MJ, Loughland RA, Brocklehurst PJ (1999) Dry season camps of flying-foxes (Pteropus spp.) in Kakadu World Heritage Area, north Australia. J Zool 247:155–163.

    Google Scholar 

  • Tryjanowski P, Sparks TH, Profus P (2005) Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: The importance of nest quality. Divers Distrib 11:219–223.

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150.

    Google Scholar 

  • United States Climate Change Science Program (US CCSP) (2008) Preliminary Review of Adaptation Options for Climate-Sensitive Ecosystems and Resources. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • United States Global Change Research Program (USGCRP) (2009) Global Change Impacts in the United States. Cambridge: Cambridge University Press.

    Google Scholar 

  • van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de la Chesnaye F, den Elzen MGJ, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci USA 105:15258–15262.

    Google Scholar 

  • Westerling A, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier Spring increase western U.S. forest wildfire activity. Science 313:940–943.

    CAS  Google Scholar 

  • Wigley TML (2005) The climate change commitment. Science 307:1766–1769.

    CAS  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742.

    CAS  Google Scholar 

  • Williams DW, Liebhold AM (2002) Climate change and the outbreak ranges of two North American bark beetles. Agric For Entomol 4:87–99.

    Google Scholar 

  • Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc R Soc Lond B Biol Sci 270:1887–1892.

    Google Scholar 

  • Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ, Ballard G, Comiso JC (2001) Adélie Penguin population change in the Pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic circumpolar current. Mar Ecol Prog Ser 213:301–309.

    Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146.

    Google Scholar 

  • Wullschleger SD, Norby RJ (2001) Sap velocity and canopy transpiration for a 12-year-old sweetgum stand exposed to free-air CO2 enrichment. New Phytol 150:489–498.

    Google Scholar 

  • Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gonzalez, P. (2010). Impacts of Climate Change on Terrestrial Ecosystems and Adaptation Measures for Natural Resource Management. In: Dodson, J. (eds) Changing Climates, Earth Systems and Society. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8716-4_2

Download citation

Publish with us

Policies and ethics