Skip to main content

Dark Matter Direct and Indirect Detection

  • Chapter
Dark Matter and Dark Energy

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 370))

  • 5417 Accesses

Abstract

Cosmological and astrophysical observations show with outstanding evidence that more than 80% of the matter density in the Universe is nonluminous. Attractive candidates for the composition of this dark cosmic component are still undetected, neutral, heavy particles, which were non-relativistic, or “cold,” when they decoupled from ordinary matter. This paper will review the direct and indirect detection methods of these hypothetical particles, with a major emphasis on the previous approach. In the direct search, sophisticated instruments look for the scattering of dark matter particles off nuclei in ultra-low background, deep underground experiments. In the indirect search, space-based and ground-based observatories aim to detect secondary particles that could originate from annihilations of dark matter candidates in various locations in the Milky Way or in close galaxies. Emphasis is given to the most recent developments and to the status of close-future projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.Sofue Y. and Rubin V., Ann. Rev. Astron. Astrophys. 39, 137 (2001)

    Article  ADS  Google Scholar 

  2. 2.Zwicky F, Helvetica Phys. Acta 6, 110 (1933)

    MATH  ADS  Google Scholar 

  3. 3.Bahcall N. et al, Astrophys. J. Suppl.148, 243 (2003)

    Google Scholar 

  4. 4.Bennett C. L et al, (WMAP Collaboration) 2003 Astrophys. J. Suppl. 148, 1 (2003); Spergel D N et al, Astrophys. J. Suppl. 148, 175 (2003)

    Google Scholar 

  5. 5.Astier P. et al, Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  6. 6.Turner M. S., Science 315, 59 (2007)

    Article  ADS  Google Scholar 

  7. 7.Bertone G., Hooper D and Silk J, Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  8. 8.Bergstrom L, Rep. Prog. Phys. 63, 793 (2000)

    Article  ADS  Google Scholar 

  9. 9.Ellis J. et al, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  10. 10.Feng J., J. Phys. G 32, R1 (2006)

    Article  ADS  Google Scholar 

  11. 11.Duffy L. D. and van Bibber K., New J. Phys. 11, 105008 (2009)

    Google Scholar 

  12. 12.Jungman G, Kamionkowski M.and Griest K., Phys. Rep. 267, 195 (1996)

    Article  ADS  Google Scholar 

  13. 13.Goldberg H., Phys. Lett. 50, 1419 (1983)

    Article  Google Scholar 

  14. 14.Kaluza T. F. E., Sitzungsberichte Preussische Akademie der Wissenschaften96,69(1921)

    Google Scholar 

  15. 15.Klein O., Z. Phys. 37, 895 (1926)

    Article  ADS  Google Scholar 

  16. 16.Hewett J. and March-Russell J., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  17. 17.Chardin G., e-Print arXiv:astro-ph/0411503v3

    Google Scholar 

  18. 18.Carr J., Lamanna G. and Lavalle J., Rep. Prog. Phys. 69, 2475 (2006)

    Article  ADS  Google Scholar 

  19. 19.Michie R. W., Mon. Not. R. Astron. Soc. 125, 127 (1963)

    MathSciNet  ADS  Google Scholar 

  20. 20.Navarro J. F. et al, Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  21. 21.Moore B. et al, Phys. Rev. D 64, 063508 (2001)

    Article  ADS  Google Scholar 

  22. 22.Lewin J. D. and Smith P. F., Astropart. Phys. 6, 87 (1996)

    Article  ADS  Google Scholar 

  23. 23.Drukier A., Freese K. and Spergel D. N., Phys. Rev. D 30, 3495 (1986)

    Article  ADS  Google Scholar 

  24. 24.Copi C. J. and Krauss L. M., Phys. Rev. D 67, 103507 (2003)

    Article  ADS  Google Scholar 

  25. 25.Goodman M. W. and Witten E., Phys. Rev. D 31, 3059 (1985)

    Article  ADS  Google Scholar 

  26. 26.Freese K. et al, Phys. Rev. D 37, 3388 (1988)

    Article  ADS  Google Scholar 

  27. 27.Bernabei R., Riv. N. Cim. 18, (1995)

    Google Scholar 

  28. 28.Bernabei R. et al, Riv. N. Cim. 26, 1 (2003)

    Google Scholar 

  29. 29.Fushimi K. et al, Astropart. Phys. 12, 185 (2000)

    Article  ADS  Google Scholar 

  30. 30.Alner G. J. et al, Phys Lett B 616, 17 (2005)

    Article  ADS  Google Scholar 

  31. 31.Bernabei R. et al, Eur. Phys. J. C 56, 333 (2008)

    Article  Google Scholar 

  32. 32.Amaré J. et al, J. Phys. Conf. Ser.39, 123 (2006)

    Google Scholar 

  33. 33.Lee H. S. et al, Phys. Rev. Lett. 99, 091301 (2007)

    Article  ADS  Google Scholar 

  34. 34.Lin S. T. et al., Phys.Rev.D 79, 061101 (2009)

    Google Scholar 

  35. 35.Aalseth C.E. et al, Phys. Rev. Lett. 101, 251301 (2008)

    Article  ADS  Google Scholar 

  36. 36.Aalseth C.E. et al, e-Print arXiv:1002.4703v2[astro-ph.CO]

    Google Scholar 

  37. 37.A. Bottino et al., e-Print arXiv:0912.4025v2[hep-ph]

    Google Scholar 

  38. 38.Giuliani A., Physica B 280, 501 (2000)

    Article  ADS  Google Scholar 

  39. 39.Ahmed Z. et al, Phys. Rev. Lett. 102, 011301 (2009); Ahmed, Z. et al., e-Print arXiv:0912. 3592v1[astro-ph.CO].

    Google Scholar 

  40. 40.Akerib D. S. et al, J. Low Temp. Phys. 151, 818 (2008)

    Article  ADS  Google Scholar 

  41. 41.Sanglard V. et al, Phys. Rev. D 71, 122002 (2005)

    Article  ADS  Google Scholar 

  42. 42.Broniatowski A. et al, Phys. Lett. B 681, 305 (2009)

    Article  ADS  Google Scholar 

  43. 43.Armengaud E. et al., Phys. Lett. B 687 294 (2010)

    Article  ADS  Google Scholar 

  44. 44.Angloher G. et al, Astropart. Phys. 31, 270 (2009)

    Article  ADS  Google Scholar 

  45. 45.Cebrian S. et al, Physics Letters B 563, 48 (2003)

    Article  ADS  Google Scholar 

  46. 46.Kraus H. et al, Nucl. Phys. B (Proc. Suppl.) 173, 168 (2007)

    Google Scholar 

  47. 47.Angle J. et al, Phys. Rev. Lett. 100, 021303 (2008)

    Article  ADS  Google Scholar 

  48. 48.Aprile E. et al., e-Print arXiv:1005.0380v2[astro-ph.CO]

    Google Scholar 

  49. 49.A. Manzur et al., e-Print arXiv:0909.1063v4[physics.ins-det]

    Google Scholar 

  50. 50.Gaitskell R.: LUX - Large Underground Xenon Dark Matter Experiment - Report on Design, Construction and Detector Testing, to be published in the Proceedings of IDM08, Stockholm, August 19, (2008)

    Google Scholar 

  51. 51.Akimov D. Yu. et al., e-Print arXiv:1003.5626v2[hep-ex]

    Google Scholar 

  52. 52.Benetti P. et al, Astropart. Phys. 28, 495 (2008)

    Article  Google Scholar 

  53. 53.Lanfranchi M. and Rubbia A., J. Phys. Conf. Ser. 65, 012014 (2007)

    Article  ADS  Google Scholar 

  54. 54.Suzuki, Y: XMASS experiment, to be published in the Proceedings of IDM08, Stockholm, August 19, (2008)

    Google Scholar 

  55. 55.Horowitz C. J et al, Phys. Rev.D 68, 023005 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  56. 56.Boulay M. G. and Hime A., Astropart. Phys. 25, 179 (2006)

    Article  ADS  Google Scholar 

  57. 57.Behnke E. et al, Science 319, 933 (2008)

    Article  ADS  Google Scholar 

  58. 58.Archambault S. et al, Phys.Lett. B 682, 185 (2009)

    Article  ADS  Google Scholar 

  59. 59.Girard T. A. et al, Phys. Lett. B 621, 233 (2005)

    Article  ADS  Google Scholar 

  60. 60.Alner G. J. et al, Nucl. Instr. Meth. Phys. Res. A 555, 173 (2005)

    Article  ADS  Google Scholar 

  61. 61.Sciolla G. et al, e-Print arXiv: 0903.3895 [astro-ph-IM], to be published in the Journal of Physics: Conference Series

    Google Scholar 

  62. 62.Nishimura H. et al, Astropart. Phys. 31, 185 (2009)

    Article  ADS  Google Scholar 

  63. 63.Moulin E. et al, Phys. Lett. B 614, 143 (2005)

    Article  ADS  Google Scholar 

  64. 64.Gondolo P. and Silk J., Phys. Rev. Lett. 83, 1719 (1999)

    Article  ADS  Google Scholar 

  65. 65.Silk J. and Stebbins A., Astrophys. J. 411, 439 (1993)

    Article  ADS  Google Scholar 

  66. 66.Barwick S. W. et al, Astrophys. J. 482, L191 (1997)

    Article  ADS  Google Scholar 

  67. 67.Adriani O. et al, Nature 458, 607 (2009)

    Article  ADS  Google Scholar 

  68. 68.Chang J. et al, Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  69. 69.Torii S. et al, e-Print arXiv:0809.0760 [astro-ph]

    Google Scholar 

  70. 70.Abdo A. A. et al, Phys. Rev. Lett. 102, 181101 (2009)

    Article  ADS  Google Scholar 

  71. 71.Aharonian F. et al, Phys. Rev. Lett. 101, 261104 (2008)

    Article  ADS  Google Scholar 

  72. 72.K. Abe et al, Phys.Lett.B 670, 103 (2008)

    Google Scholar 

  73. 73.Aguilar M. et al., Phys. Reports 366, 331 (2002)

    Article  ADS  Google Scholar 

  74. 74.Boezio M. et al, Astrophys. J.561, 787 (2001)

    Google Scholar 

  75. 75.Battiston R., J. Phys. Conf. Ser. 116, 012001 (2008)

    Article  ADS  Google Scholar 

  76. 76.Mayer-Hasselwander H. A. et al, Astron. Astrophys. 335, 161 (1998)

    ADS  Google Scholar 

  77. 77.Tsuchiya K. et al, Astrophys. J. 606, L115 (2004)

    Article  ADS  Google Scholar 

  78. 78.Kosack K. et al, Astrophys. J. 608, L97 (2004)

    Article  ADS  Google Scholar 

  79. 79.Jean P. et al, Astron. Astrophys. 407, L55 (2003)

    Article  ADS  Google Scholar 

  80. 80.Tavani M. et al, Astron.Astrophys. 502, 995 (2009)

    Article  ADS  Google Scholar 

  81. 81.Ageron M. et al, Astropart. Phys., 31, 277 (2009)

    Article  ADS  Google Scholar 

  82. 82.Aggouras G. et al, Nucl. Instrum. Meth. Phys. Res. A 552, 420 (2005)

    Article  Google Scholar 

  83. 83.Capone A., Nucl. Instrum. Meth. Phys. Res. A 602, 47 (2009)

    Article  ADS  Google Scholar 

  84. 84.Aynutdinov V. et al, Astropart.Phys.25, 140 (2006)

    Google Scholar 

  85. 85.Ackermann M. et al, Astropart.Phys. 22, 127 (2004)

    Article  ADS  Google Scholar 

  86. 86.Abbasi R. et al, Astrophys.J.701, L47 (2009)

    Google Scholar 

  87. 87.Lyons K.: The KM3NeT Project, XXth Rencontres de Blois, Blois France May18-23, (2008)

    Google Scholar 

  88. 88.Adriani O. et al, Nucl. Instrum. Meth. Phys. Res. A 478, 114 (2002)

    Article  ADS  Google Scholar 

  89. 89.Strong A. W. and Moskalenko I. V., Astrophys. J. 509, 212 (1998)

    Article  ADS  Google Scholar 

  90. 90.Morselli A. and Moskalenko I. V., e-Print arXiv:0811.3526 [astro-ph]

    Google Scholar 

  91. 91.Grasso D. et al, e-Print arXiv:0905.0636v3 [astro-ph.HE]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giuliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Giuliani, A. (2011). Dark Matter Direct and Indirect Detection. In: Matarrese, S., Colpi, M., Gorini, V., Moschella, U. (eds) Dark Matter and Dark Energy. Astrophysics and Space Science Library, vol 370. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8685-3_7

Download citation

Publish with us

Policies and ethics