Skip to main content

Cosmology with Numerical Simulations

  • Chapter
Dark Matter and Dark Energy

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 370))

Abstract

The birth and growth of cosmic structures is a highly nonlinear phenomenon that needs to be investigated with suitable numerical simulations. Themain goal of these simulations is to provide robust predictions, which, once compared to the present and future observations, allows us to constrain the main cosmological parameters. Different techniques have been proposed to follow both the gravitational interaction inside cosmological volumes and the variety of physical processes acting on the baryonic component only. In this chapter, we review the main characteristics of the numerical schemes most commonly used in the literature, discuss their pros and cons, and summarize the results of their comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15

    Article  ADS  Google Scholar 

  2. Barnes, J., & Hut, P. 1986, Nature, 324, 446

    Article  ADS  Google Scholar 

  3. Binney, J., & Tremaine, S. 1987, Princeton, NJ, Princeton University Press, 1987

    Google Scholar 

  4. Borgani, S., et al. 2006, MNRAS, 367, 1641

    Article  ADS  Google Scholar 

  5. Borgani, S., Fabjan, D., Tornatore, L., Schindler, S., Dolag, K., & Diaferio, A. 2008, Space Science Reviews, 134, 379

    Article  ADS  Google Scholar 

  6. Couchman, H. M. P. 1991, ApJ, 368, L23

    Article  ADS  Google Scholar 

  7. Courant, R., & Friedrichs, K. O.1948, Pure and Applied Mathematics, New York:

    Google Scholar 

  8. Interscience

    Google Scholar 

  9. Efstathiou, G., Davis, M., White, S. D. M., & Frenk, C. S. 1985, ApJS, 57, 241

    Article  ADS  Google Scholar 

  10. Evrard, A. E., et al. 2002, ApJ, 573, 7

    Article  ADS  Google Scholar 

  11. Frenk, C. S., et al. 1999, ApJ, 525, 554

    Article  ADS  Google Scholar 

  12. Grossi, M., Dolag, K., Branchini, E., Matarrese, S., & Moscardini, L. 2007, MNRAS, 382, 1261

    Article  ADS  Google Scholar 

  13. Heitmann, K., et al. 2008, Computational Science and Discovery, 1, 015003

    Article  ADS  Google Scholar 

  14. Ito, T., Makino, J., Fukushige, T., Ebisuzaki, T., Okumura, S. K., & Sugimoto, D. 1993, PASJ, 45,339

    ADS  Google Scholar 

  15. Kang, H., Ostriker, J. P., Cen, R., Ryu, D., Hernquist, L., Evrard, A. E., Bryan, G. L., & Norman, M. L. 1994, ApJ, 430, 83

    Article  ADS  Google Scholar 

  16. Katz, N., Weinberg, D. H., & Hernquist, L. 1996, ApJS, 105, 19

    Article  ADS  Google Scholar 

  17. Monaghan, J. J. 1992, ARA&A, 30, 543

    Article  ADS  Google Scholar 

  18. Monaghan, J. J. 1997, Journal of Computational Physics, 136, 298

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. O’Shea, B. W., Nagamine, K., Springel, V., Hernquist, L., & Norman, M. L. 2005, ApJS, 160,1

    Article  ADS  Google Scholar 

  20. Power, C., Navarro, J. F., Jenkins, A., Frenk, C. S., White, S. D. M., Springel, V., Stadel, J., & Quinn, T. 2003, MNRAS, 338, 14

    Article  ADS  Google Scholar 

  21. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Cambridge: University Press

    Google Scholar 

  22. Springel, V., & Hernquist, L. 2002, MNRAS, 333, 649

    Article  ADS  Google Scholar 

  23. Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289

    Article  ADS  Google Scholar 

  24. Springel, V. 2005, MNRAS, 364, 1105

    Article  ADS  Google Scholar 

  25. Tormen, G., Bouchet, F. R., & White, S. D. M. 1997, MNRAS, 286, 865

    ADS  Google Scholar 

  26. White, S. D. M. 1996, Cosmology and Large Scale Structure, 349

    Google Scholar 

  27. Zel’Dovich, Y. B. 1970, A&A, 5, 84

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauro Moscardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Moscardini, L., Dolag, K. (2011). Cosmology with Numerical Simulations. In: Matarrese, S., Colpi, M., Gorini, V., Moschella, U. (eds) Dark Matter and Dark Energy. Astrophysics and Space Science Library, vol 370. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8685-3_4

Download citation

Publish with us

Policies and ethics