Skip to main content

Mass Extinctions and Changing Taphonomic Processes

Fidelity of the Guadalupian, Lopingian, and Early Triassic Fossil Records

  • Chapter
  • First Online:
Taphonomy

Abstract

The biotic crisis of the Middle Permian through Early Triassic is unmatched in the Phanerozoic in terms of taxonomic diversity losses and paleoecological reorganization. However, the potential taphonomic bias from post-mortem diagenesis for this crucial time has not been evaluated. We assessed the quality of the fossil record during this interval by quantifying the number of Lazarus taxa using our own database, data available in the Paleobiology Database and previous compilations. We also quantitatively tested for paleoecological differences between silicified versus non-silicified faunas. Herein we report that there is no major taphonomic bias due to skeletal mineralogy or fossil preservation affecting the Middle and Late Permian fossil record, but that aragonite-shelled molluscs may exhibit a significant Lazarus effect during the Induan. We propose that a variety of mechanisms affected the fossil record of the Paleozoic/Mesozoic transition, including ocean chemistry, paleobiology of the examined groups, and human influences on taxonomic and sampling practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller, R. C. (1982). Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology, 90, 79–95.

    Article  Google Scholar 

  • Allison, P. A., & Briggs, D. E. G. (1993). Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology, 21, 65–68.

    Article  Google Scholar 

  • Bambach, R. K., Knoll, A. H., & Sepkoski, J. J., Jr. (2002). Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences of the United States of America, 99, 6954–6959.

    Article  Google Scholar 

  • Bambach, R. K., Knoll, A. H., & Wang, S. C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30, 522–542.

    Article  Google Scholar 

  • Batten, R. L. (1973). The vicissitudes of the gastropods during the interval of Guadalupian-Ladinian time. In A. Logan & L. V. Hills (Eds.), The Permian and Triassic systems and their mutual boundary (Vol. 2, pp. 596–607). Boulder: Canadian Society of Petroleum Geologists Memoir.

    Google Scholar 

  • Batten, R. L., & Stokes, W. L. (1986). Early Triassic gastropods from the Sinbad Member of the Moenkopi Formation, San Rafael Swell, Utah. American Museum Novitates, 2864, 1–33.

    Google Scholar 

  • Berner, R. A. (2004). The Phanerozoic carbon cycle: CO 2 and O 2 . New York: Oxford University Press.

    Google Scholar 

  • Chen, Z. Q., Kaiho, K., & George, A. D. (2005). Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeography, Palaeoclimatology, Palaeoecology, 224, 270–290.

    Article  Google Scholar 

  • Cherns, L., & Wright, V. P. (2000). Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28, 791–794.

    Article  Google Scholar 

  • Clapham, M. E., & Bottjer, D. J. (2007a). Permian marine paleoecology and its implications for large-scale decoupling of brachiopod and bivalve abundance and diversity during the Lopingian (Late Permian). Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 283–301.

    Article  Google Scholar 

  • Clapham, M. E., & Bottjer, D. J. (2007b). Prolonged Permian–Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences of the United States of America, 104, 12971–12975.

    Article  Google Scholar 

  • Clapham, M. E., Shen, S. Z., & Bottjer, D. J. (2009). The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology, 35, 33–51.

    Article  Google Scholar 

  • Cooper, G. A., & Grant, R. E. (1972). Permian brachiopods of west Texas, I. Smithsonian Contributions to Paleobiology, 14, 1–231.

    Google Scholar 

  • Courtillot, V., & Gaudemer, Y. (1996). Effects of mass extinctions on diversity. Nature, 381, 146–148.

    Article  Google Scholar 

  • Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., & Maxwell, P. A. (2003). Estimating the rock volume bias in paleobiodiversity studies. Science, 301, 358–360.

    Article  Google Scholar 

  • Crasquin-Soleau, S., & Kershaw, S. (2005). Ostracod fauna from the Permian–Triassic boundary interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 217, 131–141.

    Article  Google Scholar 

  • Droser, M. L., Bottjer, D. J., & Sheehan, P. M. (1997). Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology, 25, 167–170.

    Article  Google Scholar 

  • Droser, M. L., Bottjer, D. J., Sheehan, P. M., & McGhee, G. (2000). Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology, 28, 675–678.

    Article  Google Scholar 

  • Erwin, D. H. (1996). Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. In D. Jablonski, D. H. Erwin, & J. Lipps (Eds.), Evolutionary paleobiology. Chicago: The University of Chicago Press.

    Google Scholar 

  • Erwin, D. H. (2001). Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 98, 5399–5403.

    Article  Google Scholar 

  • Erwin, D.H. (2006). Extinction: how life on Earth Nearly ended 250 million years ago. Princeton University Press, Princeton. 306 pp.

    Google Scholar 

  • Erwin, D. H., & Droser, M. L. (1993). Elvis taxa. Palaios, 8, 623–624.

    Article  Google Scholar 

  • Erwin, D. H., & Pan, H. (1996). Recoveries and radiations: gastropods after the Permo-Triassic mass extinction. In M. B. Hart (Ed.), Biotic recovery from mass extinction events (Vol. 102, pp. 223–229). London: Geological Society Special Publication.

    Google Scholar 

  • Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., et al. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362–366.

    Article  Google Scholar 

  • Flessa, K. W. (1990). The “facts” of mass extinctions. In V. L. Sharpton & P. D. Ward (Eds.), Global catastrophes in Earth history: An interdisciplinary conference on impacts, volcanism, and mass mortality (Vol. 247, pp. 1–7). London: Geological Society of America Special Paper.

    Google Scholar 

  • Flessa, K. W., & Jablonski, D. (1983). Extinction is here to stay. Paleobiology, 9, 315–321.

    Google Scholar 

  • Flügel, E., & Stanley, G. D. (1984). Reorganization, development and evolution of post-Permian reefs and reef organisms. Palaeontographica Americana, 54, 177–186.

    Google Scholar 

  • Foote, M. (2000) Origination and extinction components of taxonomic diversity: general problems. In: D.H. Erwin & S.L. Wing (Eds.) Deep time: Paleobiology’s perspective, Paleobiology, 26, 4:74–102.

    Google Scholar 

  • Fraiser, M. L., & Bottjer, D. J. (2004). The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios, 19, 259–275.

    Article  Google Scholar 

  • Fraiser, M. L., & Bottjer, D. J. (2005a). Fossil preservation during the aftermath of the end-Permian mass extinction: taphonomic processes and palaeoecological signals. In J. Morrow, D. J. Over, & P. B. Wignall (Eds.), Understanding late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach (Vol. 20, pp. 299–311). Amsterdam: Developments in Paleontology and Stratigraphy.

    Chapter  Google Scholar 

  • Fraiser, M. L., & Bottjer, D. J. (2005b). Restructuring of benthic level-bottom shallow marine communities due to prolonged environmental stress during the aftermath of the end-Permian mass extinction. Comptes Rendus Palevol, 4, 515–523.

    Google Scholar 

  • Fraiser, M. L., & Bottjer, D. J. (2007). When bivalves took over the world. Paleobiology, 33, 397–413.

    Article  Google Scholar 

  • Fraiser, M. L., & Bottjer, D. J. (2009) Opportunistic behavior of the invertebrate benthos following the End-Permian mass extinction. Australian Journal of Earth Sciences, 56, 841–857.

    Article  Google Scholar 

  • Fraiser, M. L., Twitchett, R. J., & Bottjer, D. J. (2005). Unique microgastropod biofacies in the Early Triassic: indicator of long-term biotic stress and the pattern of biotic recovery after the end-Permian mass extinction. Comptes Rendus Palevol, 4, 475–484.

    Google Scholar 

  • Gould, S. J., & Calloway, C. B. (1980). Clams and brachiopods – ships that pass in the night. Paleobiology, 6, 383–396.

    Google Scholar 

  • Grant, R. E. (1968). Structural adaptation in two Permian brachiopod genera, Salt Range, West Pakistan. Journal of Paleontology, 42, 1–32.

    Google Scholar 

  • Grant, R. E. (1976). Permian brachiopods from southern Thailand. Journal of Paleontology, 50(3), 1–269.

    Google Scholar 

  • Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., et al. (2005). Photic zone euxinia during the Permian–Triassic superanoxic event. Science, 307, 706–709.

    Article  Google Scholar 

  • Hautmann, M. (2004). Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50, 257–261.

    Article  Google Scholar 

  • Hautmann, M., Benton, M. J., & Tomasovych, A. (2008). Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen., 249, 119–127.

    Article  Google Scholar 

  • Hautmann, M., & Nützel, A. (2004). First record of a heterodont bivalve (Mollusca) from the Early Triassic: palaeoecological significance and implications for the “Lazarus problem”. Palaeontology, 48, 1131–1138.

    Article  Google Scholar 

  • Hautmann, M., Stiller, F., Huawei, C., & Jingeng, S. (2008). Extinction-recovery pattern of level-bottom faunas across the Triassic-Jurassic boundary in Tibet: implications for potential killing mechanisms. Palaios, 23, 711–718.

    Article  Google Scholar 

  • Henderson, C. M. (2005). International correlation of the marine Permian time scale. Permophiles, 46, 6–9.

    Google Scholar 

  • Holdaway, H. K., & Clayton, C. J. (1982). Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119, 371–382.

    Article  Google Scholar 

  • Huey, R. B., & Ward, P. D. (2005). Hypoxia, global warming, and terrestrial Late Permian extinctions. Science, 308, 398–401.

    Article  Google Scholar 

  • Isozaki, Y. (1997). Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276, 235–238.

    Article  Google Scholar 

  • Isozaki, Y., Kawahata, H., & Minoshima, K. (2007). The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld, 16, 16–30.

    Article  Google Scholar 

  • Jablonski, D. (1986a). Background and mass extinctions: the alternation of macroevolutionary regimes. Science, 31, 129–133.

    Article  Google Scholar 

  • Jablonski, D. (1986b). Causes and consequences of mass extinctions: a comparative approach. In D. K. Elliot (Ed.), Dynamics of extinction. New York: Wiley.

    Google Scholar 

  • Jablonski, D. (2001). Lessons from the past: evolutionary impacts of mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 98, 5393–5398.

    Article  Google Scholar 

  • Jablonski, D. (2002). Survival without recovery after mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 99, 8139–8144.

    Article  Google Scholar 

  • Jablonski, D. (2005). Mass extinctions and macroevolution. Paleobiology, 31, 192–210.

    Article  Google Scholar 

  • Jin, Y. G., Zhang, J., & Shang, Q. H. (1994). Two phases of end-Permian mass extinction. Canadian Society of Petroleum Geologists Memoir, 17, 813–822.

    Google Scholar 

  • Kauffman, E. G., & Harries, P. J. (1996). The importance of crisis progenitors in recovery from mass extinction. In M. B. Hart (Ed.), Biotic recovery from mass extinction events (Vol. 102, pp. 15–39). London: Geological Society Special Publication.

    Google Scholar 

  • Kidder, D. L., & Erwin, D. H. (2001). Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. The Journal of Geology, 109, 509–522.

    Article  Google Scholar 

  • Lehrmann, D. J., Ramezani, J., Bowring, S. A., Martin, M. W., Montgomery, P., Enos, P., et al. (2006). Timing of recovery from the end-Permian mass extinction: Geochronologic and biostratigraphic constraints from south China. Geology, 34, 1053–1956.

    Article  Google Scholar 

  • McRoberts, C. A., & Newton, C. R. (1995). Selective extinction among end-Triassic European bivalves. Geology, 23, 102–104.

    Article  Google Scholar 

  • Newell, N.D., & Boyd, D.W. (1995). Pectinoid bivalves of the Permian–Triassic crisis. Bulletin of the American Museum of Natural History 227, 95 p.

    Google Scholar 

  • Perry, D. G., & Chatterton, B. D. E. (1979). Late Early Triassic brachiopod and conodont fauna, Thaynes Formation, southeastern Idaho. Journal of Paleontology, 53, 307–319.

    Google Scholar 

  • Powers, C. M., & Bottjer, D. J. (2007). Bryozoan paleoecology indicates mid-Phanerozoic extinctions are the product of long-term environmental stress. Geology, 35, 995–998.

    Article  Google Scholar 

  • Pruss, S. B., & Bottjer, D. J. (2004). Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 19, 551–564.

    Article  Google Scholar 

  • Raup, D. M. (1986). Biological extinction in earth history. Science, 231, 528–1533.

    Google Scholar 

  • Raup, D. M. (1994). The role of extinction in evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6758–6763.

    Article  Google Scholar 

  • Raup, D. M., & Sepkoski, J. J. (1982). Mass extinctions in the marine fossil record. Science, 215, 1501–1503.

    Article  Google Scholar 

  • Rickards, R. B., & Wright, A. J. (2002). Lazarus taxa, refugia and relict faunas: evidence from graptolites. Journal of the Geological Society, 159, 1–4.

    Article  Google Scholar 

  • Schubert, J. K., & Bottjer, D. J. (1995). Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western U.S. Palaeogeography, Palaeoclimatology, Palaeoecology, 116, 1–39.

    Article  Google Scholar 

  • Schubert, J. K., Kidder, D. L., & Erwin, D. H. (1997). Silica-replaced fossils through the Phanerozoic. Geology, 25, 1031–1034.

    Article  Google Scholar 

  • Sephton, M. A., Looy, C. V., Brinkhuis, H., Wignall, P. B., de Leeuw, J. W., & Visscher, H. (2005). Catastrophic soil erosion during the end-Permian biotic crisis. Geology, 33, 941–944.

    Article  Google Scholar 

  • Sepkoski, J. J., Jr. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36–53.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10, 246–267.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1986). Phanerozoic overview of mass extinction. In D. M. Raup & D. Jablonski (Eds.), Patterns and processes in the history of life. Berlin: Springer-Verlag.

    Google Scholar 

  • Shen, S. Z., Zhang, H., Li, W. Z., Mu, L., & Xie, J. F. (2006). Brachiopod diversity patterns from Carboniferous to Triassic in south China. Geological Journal, 41, 345–361.

    Article  Google Scholar 

  • Signor, P. W., & Lipps, J. H. (1982). Sampling bias, gradual extinction patterns and catastrophe in the fossil record. In L. T. Silver & P. H. Schultz (Eds.), Geological implications of impacthypothesis of large asteroids and comets on the Earth. Boulder, CO: Geological Society of America Special Paper.

    Google Scholar 

  • Smith, A. B. (2007). Intrinsic versus extrinsic biases in the fossil record: contrasting the fossil record of echinoids in the Triassic and early Jurassic using sampling data, phylogenetic analysis, and molecular clocks. Paleobiology, 33, 310–323.

    Article  Google Scholar 

  • Smith, A. B., & McGowan, A. J. (2007). The shape of the Phaerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of western Europe? Palaeontology, 50, 765–774.

    Article  Google Scholar 

  • Stanley, D. G., Jr., Fine, M., & Tchernov, D. (2007). Ocean acidification and scleractinian corals. Science, 317, 1032–1033.

    Article  Google Scholar 

  • Stanley, S. M., & Yang, X. (1994). A double mass extinction at the end of the Paleozoic Era. Science, 266, 1340–1344.

    Article  Google Scholar 

  • Tucker, M. E., & Wright, V. P. (1990). Carbonate sedimentology. London: Blackwell Science.

    Book  Google Scholar 

  • Twitchett, R. J. (1999). Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 27–37.

    Article  Google Scholar 

  • Twitchett, R. J. (2001). Incompleteness of the Permian–Triassic fossil record: a consequence of productivity decline? Geological Journal, 36, 341–353.

    Article  Google Scholar 

  • Wagner, P. J., Kosnik, M. A., & Lidgard, S. (2006). Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science, 314, 1289–1292.

    Article  Google Scholar 

  • Walter, L. M., & Burton, E. A. (1990). Dissolution of Recent platform carbonate sediments in marine pore fluids. American Journal of Science, 290, 601–643.

    Article  Google Scholar 

  • Weidlich, O. (2002). Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios Memoire Special, 24, 287–294.

    Article  Google Scholar 

  • Weidlich, O., Kiessling, W., & Flügel, E. (2003). Permian–Triassic boundary interval as a model for forcing marine ecosystem collapse by a long-term atmospheric oxygen drop. Geology, 31, 961–964.

    Article  Google Scholar 

  • Wheeley, J. R., & Twitchett, R. J. (2005). Palaeoecological significance of a new Griesbachian (Early Triassic) gastropod assemblage from Oman. Lethaia, 38, 1–9.

    Article  Google Scholar 

  • Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth-Science Reviews, 53, 1–33.

    Article  Google Scholar 

  • Wignall, P. B., & Benton, M. J. (1999). Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, London, 156, 453–456.

    Article  Google Scholar 

  • Wignall, P. B., & Twitchett, R. J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272, 1155–1158.

    Article  Google Scholar 

  • Wright, P., Cherns, L., & Hodges, P. (2003). Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology, 31, 211–214.

    Article  Google Scholar 

  • Yang, X.-N., Liu, J.-R., & Shi, G.-J. (2004). Extinction process and patterns of Middle Permian fusulinaceans in southwest China. Lethaia, 37, 139–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret L. Fraiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fraiser, M.L., Clapham, M.E., Bottjer, D.J. (2011). Mass Extinctions and Changing Taphonomic Processes. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_16

Download citation

Publish with us

Policies and ethics