Skip to main content

Sterol–Protein Interactions in Cholesterol and Bile Acid Synthesis

  • Chapter
  • First Online:
Cholesterol Binding and Cholesterol Transport Proteins:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

Cholesterol and other cholesterol related metabolites, oxysterols, and bile acids, establish specific interactions with enzymes and other proteins involved in cholesterol and bile acid homeostasis, triggering a variety of biological responses. The substrate-enzyme binding represents the best-characterized type of complementary interaction between proteins and small molecules. Key enzymes in the pathway that converts cholesterol to bile acids belong to the cytochrome P450 superfamily. In contrast to the majority of P450 enzymes, those acting on cholesterol and related metabolites exhibit higher stringency with respect to substrate molecules. This stringency, coupled with the specificity of the reactions, dictates the chemical features of intermediate metabolites (oxysterols) and end products (bile acids). Both oxysterols and bile acids have emerged in recent years as new signalling molecules due to their ability to interact and activate nuclear receptors, and consequently to regulate the transcription of genes involved in cholesterol and bile acid homeostasis and metabolism, but also in glucose and fatty acid metabolism. Interestingly, other proteins function as bile acid or sterol receptors. New findings indicate that bile acids also interact with a membrane G protein-coupled receptor, triggering a signalling cascade that ultimately promote energy expenditure. On the other end, cholesterol and side chain oxysterols establish specific interactions with different proteins residing in the endoplasmic reticulum that result in controlled protein degradation and/or trafficking to the Golgi and the nucleus. These regulatory pathways converge and contribute to adapt cholesterol uptake and synthesis to the cellular needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SREBP:

Sterol Regulatory Element Binding Protein

Scap:

SREBP cleavage activating protein

HMG-CoA:

3-hydroxy-3-methylglutaryl coenzyme A

LXR:

liver X receptor

FXR:

farnesoid X receptor;

CYP7A1:

cholesterol 7α-hydroxylase

CYP27:

sterol 27-hydroxylase

LBD:

ligand binding domain

DBD:

DNA binding domain

PXR:

pregnane X receptor

VDR:

vitamin D receptor

LDL:

low density lipoprotein

ER:

endoplasmic reticulum

References

  • Adachi, R., Shulman, A. I., Yamamoto, K., Shimomura, I., Yamada, S., Mangelsdorf, D. J. and Makishima, M., 2004, Structural determinants for vitamin D receptor response to endocrine and xenobiotic signals. Mol. Endocrinol., 18: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Adams, C. M., Goldstein, J. L. and Brown, M. S., 2003, Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Proc. Natl. Acad. Sci. USA, 100: 10647–10652.

    Article  CAS  PubMed  Google Scholar 

  • Adams, C. M., Reitz, J., De Brabander, J. K., Feramisco, J. D., Li, L., Brown, M. S. and Goldstein, J. L., 2004, Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J. Biol. Chem., 279: 52772–52780.

    Article  CAS  PubMed  Google Scholar 

  • Albers, M., Blume, B., Schlueter, T., Wright, M. B., Kober, I., Kremoser, C., Deuschle, U. and Koegl, M., 2006, A novel principle for partial agonism of liver X receptor ligands. Competitive recruitment of activators and repressors. J. Biol. Chem., 281: 4920–4930.

    Article  CAS  PubMed  Google Scholar 

  • Alberti, S., Steffensen, K. R. and Gustafsson, J. A., 2000, Structural characterisation of the mouse nuclear oxysterol receptor genes LXRalpha and LXRbeta. Gene, 243: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom, S., 1958, The formation and metabolism of bile acids under different conditions. In: Pincus, G. (Ed.) Hormones and Atherosclerosis. Brighton, Utah, Academic Press, New York.

    Google Scholar 

  • Bjorkhem, I., 2009, Are side-chain oxidized oxysterols regulators also in vivo? J. Lipid Res., 50 Suppl: S213–218.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, M. R., Yokoyama, C., Wang, X., Brown, M. S. and Goldstein, J. L., 1993, Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J. Biol. Chem., 268: 14490–14496.

    CAS  PubMed  Google Scholar 

  • Brown, M. S. and Goldstein, J. L., 1980, Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res., 21: 505–517.

    CAS  PubMed  Google Scholar 

  • Brown, M. S. and Goldstein, J. L., 2009, Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res., 50 Suppl: S15–S27.

    Article  PubMed  CAS  Google Scholar 

  • Cali, J. J., Hsieh, C. L., Francke, U. and Russell, D. W., 1991 Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J. Biol. Chem., 266: 7779–7783.

    CAS  PubMed  Google Scholar 

  • Chawla, A., Repa, J. J., Evans, R. M. and Mangelsdorf, D. J., 2001, Nuclear receptors and lipid physiology: opening the X-files. Science, 294: 1866–1870.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. D. and Evans, R. M., 1995, A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 377: 454–457.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Chen, G., Head, D. L., Mangelsdorf, D. J. and Russell, D. W., 2007, Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab., 5: 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, J. Y., 2004, Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J. Hepatol., 40: 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Choi, M., Yamamoto, K., Itoh, T., Makishima, M., Mangelsdorf, D. J., Moras, D., Deluca, H. F. and Yamada, S., 2003, Interaction between vitamin D receptor and vitamin D ligands: two-dimensional alanine scanning mutational analysis. Chem. Biol., 10: 261–270.

    Article  CAS  PubMed  Google Scholar 

  • De Fabiani, E., Mitro, N., Anzulovich, A. C., Pinelli, A., Galli, G. and Crestani, M., 2001, The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4. A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J. Biol. Chem., 276: 30708–30716.

    Article  PubMed  Google Scholar 

  • Downes, M., Verdecia, M. A., Roecker, A. J., Hughes, R., Hogenesch, J. B., Kast-Woelbern, H. R., Bowman, M. E., Ferrer, J. L., Anisfeld, A. M., Edwards, P. A., Rosenfeld, J. M., Alvarez, J. G., Noel, J. P., Nicolaou, K. C. and Evans, R. M., 2003, A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell, 11: 1079–1092.

    Article  CAS  PubMed  Google Scholar 

  • Espenshade, P. J., Li, W. P. and Yabe, D., 2002, Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc. Natl. Acad. Sci. USA, 99: 11694–11699.

    Article  CAS  PubMed  Google Scholar 

  • Farnegardh, M., Bonn, T., Sun, S., Ljunggren, J., Ahola, H., Wilhelmsson, A., Gustafsson, J. A. and Carlquist, M., 2003, The three-dimensional structure of the liver X receptor beta reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands. J. Biol. Chem., 278: 38821–38828.

    Article  PubMed  CAS  Google Scholar 

  • Federico, A. and Dotti, M. T., 2001, Cerebrotendinous xanthomatosis. Neurology, 57: 1743.

    CAS  PubMed  Google Scholar 

  • Forman, B. M., Ruan, B., Chen, J., Schroepfer, G. J., Jr. and Evans, R. M., 1997, The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc. Natl. Acad. Sci. USA, 94: 10588–10593.

    Article  CAS  PubMed  Google Scholar 

  • Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L. and Brown, M. S., 1985, Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell, 41: 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, J. L. and Brown, M. S., 1990, Regulation of the mevalonate pathway. Nature, 343: 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, J. L., Debose-Boyd, R. A. and Brown, M. S., 2006, Protein sensors for membrane sterols. Cell, 124: 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Y., Lee, J. N., Lee, P. C., Goldstein, J. L., Brown, M. S. and Ye, J., 2006, Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metab., 3: 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K. et al., 1995, Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature, 377: 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Horton, J. D., Goldstein, J. L. and Brown, M. S., 2002, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Inv., 109: 1125–1131.

    CAS  Google Scholar 

  • Hua, X., Nohturfft, A., Goldstein, J. L. and Brown, M. S., 1996, Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell, 87: 415–426.

    Article  CAS  PubMed  Google Scholar 

  • Hylemon, P. B., Zhou, H., Pandak, W. M., Ren, S., Gil, G. and Dent, P., 2009, Bile acids as regulatory molecules. J. Lipid Res. 50: 1509–1520.

    Google Scholar 

  • Im, Y. J., Raychaudhuri, S., Prinz, W. A. and Hurley, J. H., 2005, Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, 437: 154–158.

    Article  CAS  PubMed  Google Scholar 

  • Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R. and Mangelsdorf, D. J., 1996, An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature, 383: 728–731.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., Fukusumi, S., Habata, Y., Itoh, T., Shintani, Y., Hinuma, S., Fujisawa, Y. and Fujino, M., 2003, A G protein-coupled receptor responsive to bile acids. J. Biol. Chem., 278: 9435–9440.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, P. E. and Labouesse, M., 2002, The sterol-sensing domain: multiple families, a unique role? Trends Genet., 18: 193–201.

    Article  CAS  PubMed  Google Scholar 

  • Lathe, R., 2002 Steroid and sterol 7-hydroxylation: ancient pathways. Steroids, 67: 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. N., Song, B., Debose-Boyd, R. A. and Ye, J., 2006, Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem., 281: 39308–39315.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. and Staels, B., 2009 Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev., 89: 147–191.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, J. M., Kliewer, S. A., Moore, L. B., Smith-Oliver, T. A., Oliver, B. B., Su, J. L., Sundseth, S. S., Winegar, D. A., Blanchard, D. E., Spencer, T. A. and Willson, T. M., 1997, Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem., 272: 3137–3140.

    Article  CAS  PubMed  Google Scholar 

  • Macchiarulo, A. and Pellicciari, R., 2007, Exploring the other side of biologically relevant chemical space: insights into carboxylic, sulfonic and phosphonic acid bioisosteric relationships. J. Mol. Graph. Model, 26: 728–739.

    Article  CAS  PubMed  Google Scholar 

  • Makishima, M., Lu, T. T., Xie, W., Whitfield, G. K., Domoto, H., Evans, R. M., Haussler, M. R. and Mangelsdorf, D. J., 2002, Vitamin D receptor as an intestinal bile acid sensor. Science, 296: 1313–1316.

    Article  CAS  PubMed  Google Scholar 

  • Makishima, M., Okamoto, A. Y., Repa, J. J., Tu, H., Learned, R. M., Luk, A., Hull, M. V., Lustig, K. D., Mangelsdorf, D. J. and Shan, B., 1999 Identification of a nuclear receptor for bile acids. Science, 284: 1362–1365.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, T., Miyamoto, Y., Nakamura, T., Tamai, Y., Okada, H., Sugiyama, E., Nakamura, T., Itadani, H. and Tanaka, K., 2002, Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun., 298: 714–719.

    Article  CAS  PubMed  Google Scholar 

  • Mast, N., Andersson, U., Nakayama, K., Bjorkhem, I. and Pikuleva, I. A., 2004, Expression of human cytochrome P450 46A1 in Escherichia coli: effects of N- and C-terminal modifications. Arch. Biochem. Biophys., 428: 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Mast, N., Graham, S. E., Andersson, U., Bjorkhem, I., Hill, C., Peterson, J. and Pikuleva, I. A., 2005, Cholesterol binding to cytochrome P450 7A1, a key enzyme in bile acid biosynthesis. Biochemistry, 44: 3259–3271.

    Article  CAS  PubMed  Google Scholar 

  • Mast, N., Murtazina, D., Liu, H., Graham, S. E., Bjorkhem, I., Halpert, J. R., Peterson, J. and Pikuleva, I. A., 2006, Distinct binding of cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol to cytochrome P450 27A1: evidence from modeling and site-directed mutagenesis studies. Biochemistry, 45: 4396–4404.

    Article  CAS  PubMed  Google Scholar 

  • Mcgee, T. P., Cheng, H. H., Kumagai, H., Omura, S. and Simoni, R. D., 1996, Degradation of 3-hydroxy-3-methylglutaryl-CoA reductase in endoplasmic reticulum membranes is accelerated as a result of increased susceptibility to proteolysis. J. Biol. Chem., 271: 25630–25638.

    Article  CAS  PubMed  Google Scholar 

  • Mi, L. Z., Devarakonda, S., Harp, J. M., Han, Q., Pellicciari, R., Willson, T. M., Khorasanizadeh, S. and Rastinejad, F., 2003, Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol. Cell, 11: 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  • Millatt, L. J., Bocher, V., Fruchart, J. C. and Staels, B., 2003 Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis. Biochim. Biophys. Acta, 1631: 107–118.

    CAS  PubMed  Google Scholar 

  • Mitro, N., Godio, C., De Fabiani, E., Scotti, E., Galmozzi, A., Gilardi, F., Caruso, D., Chacon, A. B. and Crestani, M., 2007a, Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology, 46: 885–897.

    Article  CAS  PubMed  Google Scholar 

  • Mitro, N., Mak, P. A., Vargas, L., Godio, C., Hampton, E., Molteni, V., Kreusch, A. and Saez, E., 2007b, The nuclear receptor LXR is a glucose sensor. Nature, 445: 219–223.

    Article  CAS  PubMed  Google Scholar 

  • Murtazina, D., Puchkaev, A. V., Schein, C. H., Oezguen, N., Braun, W., Nanavati, A. and Pikuleva, I. A., 2002, Membrane-protein interactions contribute to efficient 27-hydroxylation of cholesterol by mitochondrial cytochrome P450 27A1. J. Biol. Chem., 277: 37582–37589.

    Article  CAS  PubMed  Google Scholar 

  • Murtazina, D. A., Andersson, U., Hahn, I. S., Bjorkhem, I., Ansari, G. A. and Pikuleva, I. A., 2004 Phospholipids modify substrate binding and enzyme activity of human cytochrome P450 27A1. J. Lipid Res., 45: 2345–2353.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, K., Puchkaev, A. and Pikuleva, I. A., 2001, Membrane binding and substrate access merge in cytochrome P450 7A1, a key enzyme in degradation of cholesterol. J. Biol. Chem., 276: 31459–31465.

    Article  CAS  PubMed  Google Scholar 

  • Nohturfft, A., Brown, M. S. and Goldstein, J. L., 1998, Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc. Natl. Acad. Sci. USA, 95: 12848–12853.

    Article  CAS  PubMed  Google Scholar 

  • Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S. and Espenshade, P. J., 2000, Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 102: 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Norlin, M., Andersson, U., Bjorkhem, I. and Wikvall, K., 2000a, Oxysterol 7 alpha-hydroxylase activity by cholesterol 7 alpha-hydroxylase (CYP7A). J. Biol. Chem., 275: 34046–34053.

    Article  CAS  PubMed  Google Scholar 

  • Norlin, M., Toll, A., Bjorkhem, I. and Wikvall, K., 2000b, 24-hydroxycholesterol is a substrate for hepatic cholesterol 7alpha-hydroxylase (CYP7A). J. Lipid Res., 41: 1629–1639.

    CAS  PubMed  Google Scholar 

  • Ogishima, T., Deguchi, S. and Okuda, K., 1987, Purification and characterization of cholesterol 7 alpha-hydroxylase from rat liver microsomes. J. Biol. Chem., 262: 7646–7650.

    CAS  PubMed  Google Scholar 

  • Parks, D. J., Blanchard, S. G., Bledsoe, R. K., Chandra, G., Consler, T. G., Kliewer, S. A., Stimmel, J. B., Willson, T. M., Zavacki, A. M., Moore, D. D. and Lehmann, J. M., 1999, Bile acids: natural ligands for an orphan nuclear receptor. Science, 284: 1365–1368.

    Article  CAS  PubMed  Google Scholar 

  • Pellicciari, R., Sato, H., Gioiello, A., Costantino, G., Macchiarulo, A., Sadeghpour, B. M., Giorgi, G., Schoonjans, K. and Auwerx, J., 2007, Nongenomic actions of bile acids. Synthesis and preliminary characterization of 23- and 6,23-alkyl-substituted bile acid derivatives as selective modulators for the G-protein coupled receptor TGR5. J. Med. Chem., 50: 4265–4268.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan, A., Ikeda, Y., Kwon, H. J., Brown, M. S. and Goldstein, J. L., 2007, Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA, 104: 6511–6518.

    Article  CAS  PubMed  Google Scholar 

  • Ravid, T., Doolman, R., Avner, R., Harats, D. and Roitelman, J., 2000, The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem., 275: 35840–35847.

    Article  CAS  PubMed  Google Scholar 

  • Roitelman, J. and Simoni, R. D., 1992, Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase. J. Biol. Chem., 267: 25264–25273.

    CAS  PubMed  Google Scholar 

  • Russell, D. W., 2003, The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem., 72: 137–174.

    Article  CAS  PubMed  Google Scholar 

  • Sato, H., Macchiarulo, A., Thomas, C., Gioiello, A., Une, M., Hofmann, A. F., Saladin, R., Schoonjans, K., Pellicciari, R. and Auwerx, J., 2008, Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem., 51: 1831–1841.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, M., Lund, E. G. and Russell, D. W., 1998, Two 7 alpha-hydroxylase enzymes in bile acid biosynthesis. Curr. Opin. Lipidol., 9: 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Sever, N., Song, B. L., Yabe, D., Goldstein, J. L., Brown, M. S. and Debose-Boyd, R. A., 2003a, Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem., 278: 52479–52490.

    Article  CAS  PubMed  Google Scholar 

  • Sever, N., Yang, T., Brown, M. S., Goldstein, J. L. and Debose-Boyd, R. A., 2003b, Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell, 11: 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Skalnik, D. G., Narita, H., Kent, C. and Simoni, R. D., 1988, The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase. J. Biol. Chem., 263: 6836–6841.

    CAS  PubMed  Google Scholar 

  • Song, B. L. and Debose-Boyd, R. A., 2004, Ubiquitination of 3-hydroxy-3-methylglutaryl-CoA reductase in permeabilized cells mediated by cytosolic E1 and a putative membrane-bound ubiquitin ligase. J. Biol. Chem., 279: 28798–28806.

    Article  CAS  PubMed  Google Scholar 

  • Song, B. L., Javitt, N. B. and Debose-Boyd, R. A., 2005a, Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab., 1: 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Song, B. L., Sever, N. and Debose-Boyd, R. A., 2005b, Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell, 19: 829–840.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, T. A., Li, D., Russel, J. S., Collins, J. L., Bledsoe, R. K., Consler, T. G., Moore, L. B., Galardi, C. M., Mckee, D. D., Moore, J. T., Watson, M. A., Parks, D. J., Lambert, M. H. and Willson, T. M., 2001, Pharmacophore analysis of the nuclear oxysterol receptor LXRalpha. J. Med. Chem., 44: 886–897.

    Article  CAS  PubMed  Google Scholar 

  • Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., Mackenzie, K. I., Latour, A., Liu, Y., Klaassen, C. D., Brown, K. K., Reinhard, J., Willson, T. M., Koller, B. H. and Kliewer, S. A., 2001, The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA, 98: 3369–3374.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L. P., Li, L., Goldstein, J. L. and Brown, M. S., 2005, Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem., 280: 26483–26490.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L. P., Seemann, J., Goldstein, J. L. and Brown, M. S., 2007, Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc. Natl. Acad. Sci. USA, 104: 6519–6526.

    Article  CAS  PubMed  Google Scholar 

  • Svensson, S., Ostberg, T., Jacobsson, M., Norstrom, C., Stefansson, K., Hallen, D., Johansson, I. C., Zachrisson, K., Ogg, D. and Jendeberg, L., 2003, Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J., 22: 4625–4633.

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz, P. and Mangelsdorf, D. J., 2003, Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol., 17: 985–993.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Briggs, M. R., Hua, X., Yokoyama, C., Goldstein, J. L. and Brown, M. S., 1993, Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J. Biol. Chem., 268: 14497–14504.

    CAS  PubMed  Google Scholar 

  • Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., Messaddeq, N., Harney, J. W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A. C. and Auwerx, J., 2006, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439: 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, R. E., Davis-Searles, P. R., Lambert, M. H. and Redinbo, M. R., 2003a, Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J. Mol. Biol., 331: 815–828.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, R. E., Maglich, J. M., Moore, L. B., Wisely, G. B., Noble, S. M., Davis-Searles, P. R., Lambert, M. H., Kliewer, S. A. and Redinbo, M. R., 2003b, 2.1 A crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry, 42: 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, R. E., Wisely, G. B., Moore, L. B., Collins, J. L., Lambert, M. H., Williams, S. P., Willson, T. M., Kliewer, S. A. and Redinbo, M. R., 2001, The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science, 292: 2329–2333.

    Article  CAS  PubMed  Google Scholar 

  • Williams, P. A., Cosme, J., Sridhar, V., Johnson, E. F. and Mcree, D. E., 2000, Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell, 5: 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Williams, S., Bledsoe, R. K., Collins, J. L., Boggs, S., Lambert, M. H., Miller, A. B., Moore, J., Mckee, D. D., Moore, L., Nichols, J., Parks, D., Watson, M., Wisely, B. and Willson, T. M., 2003, X-ray crystal structure of the liver X receptor beta ligand binding domain: regulation by a histidine-tryptophan switch. J. Biol. Chem., 278: 27138–27143.

    Article  CAS  PubMed  Google Scholar 

  • Xie, W., Radominska-Pandya, A., Shi, Y., Simon, C. M., Nelson, M. C., Ong, E. S., Waxman, D. J. and Evans, R. M., 2001, An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl. Acad. Sci. USA, 98: 3375–3380.

    Article  CAS  PubMed  Google Scholar 

  • Yabe, D., Brown, M. S. and Goldstein, J. L., 2002, Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl. Acad. Sci. USA, 99: 12753–12758.

    Article  CAS  PubMed  Google Scholar 

  • Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L. and Brown, M. S., 2002, Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110: 489–500.

    Article  CAS  PubMed  Google Scholar 

  • Zelcer, N., Hong, C., Boyadjian, R. and Tontonoz, P., 2009, LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science, 325: 100–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma De Fabiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Fabiani, E., Mitro, N., Gilardi, F., Crestani, M. (2010). Sterol–Protein Interactions in Cholesterol and Bile Acid Synthesis. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_4

Download citation

Publish with us

Policies and ethics