Skip to main content

Cholesterol–Protein Interaction: Methods and Cholesterol Reporter Molecules

  • Chapter
  • First Online:
Cholesterol Binding and Cholesterol Transport Proteins:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol– protein interactions, and applications of the various cholesterol probes for these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACAT:

acyl-coenzyme A:cholesterol acyltransferase

BCθ-toxin:

a biotinylated and carlsberg protease-nicked derivative of perfringolysin O

Benzophenone-cholesterol:

22-(p-benzoylphenoxy)-23,24-bisnorcholan-5-en-3β-ol

Bodipy:

boron dipyrromethene(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diazara-s-indacene)

CCKBR:

cholecystokinin receptor type B

CCM:

cholesterol consensus motif

CDCs:

cholesterol-dependent cytolysins

CRAC:

cholesterol recognition/interaction amino acid consensus

DIG, (= DRM):

detergent-insoluble (= detergent resistant) glycosphingolipid-enriched membrane domains

GPCR:

G protein coupled receptor

HDL:

high-density lipoprotein

HPβCD:

2-Hydroxypropyl)-β-cyclodextrin

5HT1A:

5-hydroxytryptamine 1A

LDL:

low-density lipoprotein

LDM:

low-density microdomains

MβCD:

methyl-β-cyclodextrin

22-NBD Cholesterol:

22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol

25-NBD Cholesterol:

25-[N-[(7-nitro-2-1,3-benzoxadiazol-4-yl)methyl]amino]-27-norcholesterol

NMR:

nuclear magnetic resonance

NPC:

Niemann-Pick C

OTR:

oxytocin receptor

PBR:

peripheral benzodiazepine receptor (= TSPO)

SCAP:

SREBP cleavage activating protein

SREBP:

sterol regulatory element binding protein

SSD:

sterol sensing domain

StAR:

steroid acute regulatory protein

START:

StAR related lipid transfer

TSPO:

mitochondrial translocator protein (18 kDa) (= PBR)

References

  • Adams, C.M., Reitz, J., De Brabander, J.K., Feramisco, J.D., Li, L., Brown, M.S., Goldstein, J.L., 2004, Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J. Biol. Chem. 279: 52772–52780.

    CAS  PubMed  Google Scholar 

  • Ahn, K.W., Sampson, N.S., 2004, Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry 43: 827–836.

    CAS  PubMed  Google Scholar 

  • Albert, A.D., Young, J.E., Yeagle, P.L., 1996, Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim. Biophys. Acta 1285: 47–55.

    PubMed  Google Scholar 

  • Alpy, F., Latchumanan, V.K., Kedinger, V., Janoshazi, A., Thiele, C., Wendling, C., Rio, M.C., Tomasetto, C., 2005, Functional characterization of the MENTAL domain. J. Biol. Chem. 280: 17945–17952.

    CAS  PubMed  Google Scholar 

  • Anderluh, G., Lakey, J.H., 2008, Disparate proteins use similar architectures to damage membranes. Trends Biochem. Sci. 33: 482–490.

    CAS  PubMed  Google Scholar 

  • Atshaves, B.P., Starodub, O., McIntosh, A., Petrescu, A., Roths, J.B., Kier, A.B., Schroeder, F., 2000, Sterol carrier protein-2 alters high density lipoprotein-mediated cholesterol efflux. J. Biol. Chem. 275: 36852–36861.

    CAS  PubMed  Google Scholar 

  • Avdulov, N.A., Chochina, S.V., Igbavboa, U., Warden, C.S., Schroeder, F., Wood, W.G., 1999, Lipid binding to sterol carrier protein-2 is inhibited by ethanol. Biochim. Biophys. Acta 1437: 37–45.

    CAS  PubMed  Google Scholar 

  • Baker, B.Y., Epand, R.F., Epand, R.M., Miller, W.L., 2007, Cholesterol binding does not predict activity of the steroidogenic acute regulatory protein, StAR. J. Biol. Chem. 282: 10223–10232.

    CAS  PubMed  Google Scholar 

  • Bar, L.K., Chong, P.L., Barenholz, Y., Thompson, T.E., 1989, Spontaneous transfer between phospholipid bilayers of dehydroergosterol, a fluorescent cholesterol analog. Biochim. Biophys. Acta 983: 109–112.

    CAS  PubMed  Google Scholar 

  • Bari, M., Battista, N., Fezza, F., Finazzi-Agro, A., Maccarrone, M., 2005, Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J. Biol. Chem. 280: 12212–12220.

    CAS  PubMed  Google Scholar 

  • Behnke, O., Tranum-Jensen, J., van, D.B., 1984, Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes. Eur. J. Cell Biol. 35: 200–215.

    CAS  PubMed  Google Scholar 

  • Bergeron, R.J., Scott, J., 1982, Cholestatriene and ergostatetraene as in vivo and in vitro membrane and lipoprotein probes. J. Lipid Res. 23: 391–404.

    CAS  PubMed  Google Scholar 

  • Bjorkqvist, Y.J., Nyholm, T.K., Slotte, J.P., Ramstedt, B., 2005, Domain formation and stability in complex lipid bilayers as reported by cholestatrienol. Biophys. J. 88: 4054–4063.

    PubMed  Google Scholar 

  • Blanchette-Mackie, E.J., 2000, Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486: 171–183.

    CAS  PubMed  Google Scholar 

  • Bolard, J., 1986, How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864: 257–304.

    CAS  PubMed  Google Scholar 

  • Brannigan, G., Henin, J., Law, R., Eckenhoff, R., Klein, M.L., 2008, Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. U. S. A 105: 14418–14423.

    CAS  PubMed  Google Scholar 

  • Brasaemle, D.L., Robertson, A.D., Attie, A.D., 1988, Transbilayer movement of cholesterol in the human erythrocyte membrane. J. Lipid Res. 29: 481–489.

    CAS  PubMed  Google Scholar 

  • Brown, A.J., Sun, L., Feramisco, J., Brown, M.S., Goldstein, J.L., 2002, Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell 10: 237–245.

    CAS  PubMed  Google Scholar 

  • Brown, D.A., Rose, J.K., 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.

    CAS  PubMed  Google Scholar 

  • Burger, K., 2000, Cholesterin und Progesteron – Modulatoren G-Protein gekoppelter Signaltransduktionswege. Dissertation, Mainz.

    Google Scholar 

  • Burger, K., Gimpl, G., Fahrenholz, F., 2000, Regulation of receptor function by cholesterol. Cell Mol. Life Sci. 57: 1577–1592.

    CAS  PubMed  Google Scholar 

  • Butler, J.D., Blanchette-Mackie, J., Goldin, E., O’Neill, R.R., Carstea, G., Roff, C.F., Patterson, M.C., Patel, S., Comly, M.E., Cooney, A., 1992, Progesterone blocks cholesterol translocation from lysosomes. J. Biol. Chem. 267: 23797–23805.

    CAS  PubMed  Google Scholar 

  • Butler, J.D., Comly, M.E., Kruth, H.S., Vanier, M., Filling-Katz, M., Fink, J., Barton, N., Weintroub, H., Quirk, J.M., Tokoro, T., 1987, Niemann-Pick variant disorders: comparison of errors of cellular cholesterol homeostasis in group D and group C fibroblasts. Proc. Natl. Acad. Sci. U. S. A 84: 556–560.

    CAS  PubMed  Google Scholar 

  • Cai, T.Q., Guo, Q., Wong, B., Milot, D., Zhang, L., Wright, S.D., 2002, Protein-disulfide isomerase is a component of an NBD-cholesterol monomerizing protein complex from hamster small intestine. Biochim. Biophys. Acta 1581: 100–108.

    CAS  PubMed  Google Scholar 

  • Challa, R., Ahuja, A., Ali, J., Khar, R.K., 2005, Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 6: E329–E357.

    PubMed  Google Scholar 

  • Chamberlain, L.H., 2004, Detergents as tools for the purification and classification of lipid rafts. FEBS Lett. 559: 1–5.

    CAS  PubMed  Google Scholar 

  • Chamberlain, L.H., Gould, G.W., 2002, The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J. Biol. Chem. 277: 49750–49754.

    CAS  PubMed  Google Scholar 

  • Chang, C.C., Lee, C.Y., Chang, E.T., Cruz, J.C., Levesque, M.C., Chang, T.Y., 1998, Recombinant acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J. Biol. Chem. 273: 35132–35141.

    CAS  PubMed  Google Scholar 

  • Charrin, S., Manie, S., Thiele, C., Billard, M., Gerlier, D., Boucheix, C., Rubinstein, E., 2003, A physical and functional link between cholesterol and tetraspanins. Eur. J. Immunol. 33: 2479–2489.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., 1990, Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem. Phys. Lipids 53: 1–15.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., London, E., 1987, Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26: 39–45.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., London, E., 1988, Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes. Biochim. Biophys. Acta 938: 24–34.

    CAS  PubMed  Google Scholar 

  • Chen, L., Lyubimov, A.Y., Brammer, L., Vrielink, A., Sampson, N.S., 2008, The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase. Biochemistry 47: 5368–5377.

    CAS  PubMed  Google Scholar 

  • Cheruku, S.R., Xu, Z., Dutia, R., Lobel, P., Storch, J., 2006, Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J. Biol. Chem. 281: 31594–31604.

    CAS  PubMed  Google Scholar 

  • Chiang, Y.R., Ismail, W., Heintz, D., Schaeffer, C., Van, D.A., Fuchs, G., 2008, Study of anoxic and oxic cholesterol metabolism by Sterolibacterium denitrificans. J. Bacteriol. 190: 905–914.

    CAS  PubMed  Google Scholar 

  • Chini, B., Parenti, M., 2004, G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J. Mol. Endocrinol. 32: 325–338.

    CAS  PubMed  Google Scholar 

  • Corbin, J., Wang, H.H., Blanton, M.P., 1998, Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol. Biochim. Biophys. Acta 1414: 65–74.

    CAS  PubMed  Google Scholar 

  • Cruz, J.C., Thomas, M., Wong, E., Ohgami, N., Sugii, S., Curphey, T., Chang, C.C., Chang, T.Y., 2002, Synthesis and biochemical properties of a new photoactivatable cholesterol analog 7,7-azocholestanol and its linoleate ester in Chinese hamster ovary cell lines. J. Lipid Res. 43: 1341–1347.

    CAS  PubMed  Google Scholar 

  • Dagher, G., Donne, N., Klein, C., Ferre, P., Dugail, I., 2003, HDL-mediated cholesterol uptake and targeting to lipid droplets in adipocytes. J. Lipid Res. 44: 1811–1820.

    CAS  PubMed  Google Scholar 

  • Das, A., Davis, M.A., Rudel, L.L., 2008, Identification of putative active site residues of ACAT enzymes. J. Lipid Res. 49: 1770–1781.

    CAS  PubMed  Google Scholar 

  • Devaux, P.F., Fellmann, P., Herve, P., 2002, Investigation on lipid asymmetry using lipid probes: Comparison between spin-labeled lipids and fluorescent lipids. Chem. Phys. Lipids 116: 115–134.

    CAS  PubMed  Google Scholar 

  • Douglass, A.D., Vale, R.D., 2005, Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121: 937–950.

    CAS  PubMed  Google Scholar 

  • Dowler, S., Kular, G., Alessi, D.R., 2002, Protein lipid overlay assay. Sci. STKE 2002: L6.

    Google Scholar 

  • Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R., He, H.T., 2002, TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21: 1899–1908.

    CAS  PubMed  Google Scholar 

  • Elias, P.M., Friend, D.S., Goerke, J., 1979, Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin. J. Histochem. Cytochem. 27: 1247–1260.

    CAS  PubMed  Google Scholar 

  • Epshtein, Y., Chopra, A.P., Rosenhouse-Dantsker, A., Kowalsky, G.B., Logothetis, D.E., Levitan, I., 2009, Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl. Acad. Sci. U. S. A 106: 8055–8060.

    CAS  PubMed  Google Scholar 

  • Eroglu, C., Brugger, B., Wieland, F., Sinning, I., 2003, Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc. Natl. Acad. Sci. U. S. A 100: 10219–10224.

    CAS  PubMed  Google Scholar 

  • Fernandez, A.M., Fernandez-Ballester, G., Ferragut, J.A., Gonzalez-Ros, J.M., 1993, Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. Biochim. Biophys. Acta 1149: 135–144.

    CAS  PubMed  Google Scholar 

  • Fielding, P.E., Russel, J.S., Spencer, T.A., Hakamata, H., Nagao, K., Fielding, C.J., 2002, Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 41: 4929–4937.

    CAS  PubMed  Google Scholar 

  • Fischer, R.T., Stephenson, F.A., Shafiee, A., Schroeder, F., 1984, delta 5,7,9(11)-Cholestatrien-3 beta-ol: a fluorescent cholesterol analogue. Chem. Phys. Lipids 36: 1–14.

    CAS  PubMed  Google Scholar 

  • Florek, M., Bauer, N., Janich, P., Wilsch-Braeuninger, M., Fargeas, C.A., Marzesco, A.M., Ehninger, G., Thiele, C., Huttner, W.B., Corbeil, D., 2007, Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res. 328: 31–47.

    CAS  PubMed  Google Scholar 

  • Friedland, N., Liou, H.L., Lobel, P., Stock, A.M., 2003, Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc. Natl. Acad. Sci. U. S. A 100: 2512–2517.

    CAS  PubMed  Google Scholar 

  • Frolov, A., Petrescu, A., Atshaves, B.P., So, P.T., Gratton, E., Serrero, G., Schroeder, F., 2000, High density lipoprotein-mediated cholesterol uptake and targeting to lipid droplets in intact L-cell fibroblasts. A single- and multiphoton fluorescence approach. J. Biol. Chem. 275: 12769–12780.

    CAS  PubMed  Google Scholar 

  • Frolov, A., Woodford, J.K., Murphy, E.J., Billheimer, J.T., Schroeder, F., 1996, Spontaneous and protein-mediated sterol transfer between intracellular membranes. J. Biol. Chem. 271: 16075–16083.

    CAS  PubMed  Google Scholar 

  • Fujimoto, T., Hayashi, M., Iwamoto, M., Ohno-Iwashita, Y., 1997, Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. J. Histochem. Cytochem. 45: 1197–1205.

    CAS  PubMed  Google Scholar 

  • Gehrig-Burger, K., Kohout, L., Gimpl, G., 2005, CHAPSTEROL. A novel cholesterol-based detergent. FEBS J. 272: 800–812.

    CAS  PubMed  Google Scholar 

  • Ghoshroy, K.B., Zhu, W., Sampson, N.S., 1997, Investigation of membrane disruption in the reaction catalyzed by cholesterol oxidase. Biochemistry 36: 6133–6140.

    CAS  PubMed  Google Scholar 

  • Gimpl, G., Burger, K., Fahrenholz, F., 1997, Cholesterol as modulator of receptor function. Biochemistry 36: 10959–10974.

    CAS  PubMed  Google Scholar 

  • Gimpl, G., Fahrenholz, F., 2000, Human oxytocin receptors in cholesterol-rich vs. cholesterol-poor microdomains of the plasma membrane. Eur. J. Biochem. 267: 2483–2497.

    CAS  PubMed  Google Scholar 

  • Gimpl, G., Gehrig-Burger, K., 2007, Cholesterol reporter molecules. Biosci. Rep. 27: 335–358.

    CAS  PubMed  Google Scholar 

  • Gimpl, G., Klein, U., Reilander, H., Fahrenholz, F., 1995, Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol- cyclodextrin complex. Biochemistry 34: 13794–13801.

    CAS  PubMed  Google Scholar 

  • Gronberg, L., Slotte, J.P., 1990, Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity. Biochemistry 29: 3173–3178.

    CAS  PubMed  Google Scholar 

  • Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K.H., Magnusson, K.E., Stralfors, P., 1999, Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13: 1961–1971.

    CAS  PubMed  Google Scholar 

  • Hadders, M.A., Beringer, D.X., Gros, P., 2007, Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317: 1552–1554.

    CAS  PubMed  Google Scholar 

  • Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.P., Chien, E.Y., Velasquez, J., Kuhn, P., Stevens, R.C., 2008, A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 16: 897–905.

    CAS  PubMed  Google Scholar 

  • Hao, M., Lin, S.X., Karylowski, O.J., Wustner, D., McGraw, T.E., Maxfield, F.R., 2002, Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 277: 609–617.

    CAS  PubMed  Google Scholar 

  • Heczkova, B., Slotte, J.P., 2006, Effect of anti-tumor ether lipids on ordered domains in model membranes. FEBS Lett. 580: 2471–2476.

    CAS  PubMed  Google Scholar 

  • Heerklotz, H., 2002, Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83: 2693–2701.

    CAS  PubMed  Google Scholar 

  • Holtta-Vuori, M., Uronen, R.L., Repakova, J., Salonen, E., Vattulainen, I., Panula, P., Li, Z., Bittman, R., Ikonen, E., 2008, BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9: 1839–1849.

    CAS  PubMed  Google Scholar 

  • Huang, P., Xu, W., Yoon, S.I., Chen, C., Chong, P.L., Liu-Chen, L.Y., 2007, Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73: 534–549.

    CAS  PubMed  Google Scholar 

  • Hyslop, P.A., Morel, B., Sauerheber, R.D., 1990, Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Biochemistry 29: 1025–1038.

    CAS  PubMed  Google Scholar 

  • Ilangumaran, S., Hoessli, D.C., 1998, Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335 (Pt 2): 433–440.

    CAS  PubMed  Google Scholar 

  • Infante, R.E., bi-Mosleh, L., Radhakrishnan, A., Dale, J.D., Brown, M.S., Goldstein, J.L., 2008a, Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J. Biol. Chem. 283: 1052–1063.

    CAS  PubMed  Google Scholar 

  • Infante, R.E., Radhakrishnan, A., bi-Mosleh, L., Kinch, L.N., Wang, M.L., Grishin, N.V., Goldstein, J.L., Brown, M.S., 2008b, Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J. Biol. Chem. 283: 1064–1075.

    CAS  PubMed  Google Scholar 

  • Infante, R.E., Wang, M.L., Radhakrishnan, A., Kwon, H.J., Brown, M.S., Goldstein, J.L., 2008c, NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. U. S. A 105: 15287–15292.

    CAS  PubMed  Google Scholar 

  • Irie, T., Fukunaga, K., Pitha, J., 1992, Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro. J. Pharm. Sci. 81: 521–523.

    CAS  PubMed  Google Scholar 

  • Ishiwata, H., Sato, S.B., Vertut-Doi, A., Hamashima, Y., Miyajima, K., 1997, Cholesterol derivative of poly(ethylene glycol) inhibits clathrin-independent, but not clathrin-dependent endocytosis. Biochim. Biophys. Acta 1359: 123–135.

    CAS  PubMed  Google Scholar 

  • Iwamoto, M., Morita, I., Fukuda, M., Murota, S., Ando, S., Ohno-Iwashita, Y., 1997, A biotinylated perfringolysin O derivative: a new probe for detection of cell surface cholesterol. Biochim. Biophys. Acta 1327: 222–230.

    CAS  PubMed  Google Scholar 

  • Jamin, N., Neumann, J.M., Ostuni, M.A., Vu, T.K., Yao, Z.X., Murail, S., Robert, J.C., Giatzakis, C., Papadopoulos, V., Lacapere, J.J., 2005, Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19: 588–594.

    CAS  PubMed  Google Scholar 

  • Kallen, J.A., Schlaeppi, J.M., Bitsch, F., Geisse, S., Geiser, M., Delhon, I., Fournier, B., 2002, X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure 10: 1697–1707.

    CAS  PubMed  Google Scholar 

  • Kan, C.C., Yan, J., Bittman, R., 1992, Rates of spontaneous exchange of synthetic radiolabeled sterols between lipid vesicles. Biochemistry 31: 1866–1874.

    CAS  PubMed  Google Scholar 

  • Keilbaugh, S.A., Thornton, E.R., 1983, Synthesis and photoreactivity of cholesteryl diazoacetate: a novel photolabeling reagent. J. Am. Chem. Soc. 105: 3283–3286.

    CAS  Google Scholar 

  • Kenworthy, A.K., 2008, Have we become overly reliant on lipid rafts? Talking point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9: 531–535.

    CAS  PubMed  Google Scholar 

  • Kilsdonk, E.P., Yancey, P.G., Stoudt, G.W., Bangerter, F.W., Johnson, W.J., Phillips, M.C., Rothblat, G.H., 1995, Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270: 17250–17256.

    CAS  PubMed  Google Scholar 

  • Kinsky, S.C., Luse, S.A., Zopf, D., van Deenen, L.L., Haxby, J., 1967, Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: electron microscopic observations. Biochim. Biophys. Acta 135: 844–861.

    CAS  PubMed  Google Scholar 

  • Kishi, K., Watazu, Y., Katayama, Y., Okabe, H., 2000, The characteristics and applications of recombinant cholesterol dehydrogenase. Biosci. Biotechnol. Biochem. 64: 1352–1358.

    CAS  PubMed  Google Scholar 

  • Klein, U., Gimpl, G., Fahrenholz, F., 1995, Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34: 13784–13793.

    CAS  PubMed  Google Scholar 

  • Ko, D.C., Binkley, J., Sidow, A., Scott, M.P., 2003, The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc. Natl. Acad. Sci. U. S. A. 100: 2518–2525.

    Google Scholar 

  • Kramer, W., Girbig, F., Corsiero, D., Burger, K., Fahrenholz, F., Jung, C., Muller, G., 2003, Intestinal cholesterol absorption: identification of different binding proteins for cholesterol and cholesterol absorption inhibitors in the enterocyte brush border membrane. Biochim. Biophys. Acta 1633: 13–26.

    CAS  PubMed  Google Scholar 

  • Kramer-Albers, E.M., Gehrig-Burger, K., Thiele, C., Trotter, J., Nave, K.A., 2006, Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia. J. Neurosci. 26: 11743–11752.

    PubMed  Google Scholar 

  • Kurzchalia, T.V., Parton, R.G., 1999, Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11: 424–431.

    CAS  PubMed  Google Scholar 

  • Kuwabara, P.E., Labouesse, M., 2002, The sterol-sensing domain: multiple families, a unique role? Trends Genet. 18: 193–201.

    CAS  PubMed  Google Scholar 

  • Lada, A.T., Davis, M., Kent, C., Chapman, J., Tomoda, H., Omura, S., Rudel, L.L., 2004, Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell based fluorescence assay: individual ACAT uniqueness. J. Lipid Res. 45: 378–386.

    CAS  PubMed  Google Scholar 

  • Lafont, F., Simons, K., Ikonen, E., 1995, Dissecting the molecular mechanisms of polarized membrane traffic: reconstitution of three transport steps in epithelial cells using streptolysin-O permeabilization. Cold Spring Harb. Symp. Quant. Biol. 60: 753–762.

    CAS  PubMed  Google Scholar 

  • Lange, Y., 1991, Disposition of intracellular cholesterol in human fibroblasts. J. Lipid Res. 32: 329–339.

    CAS  PubMed  Google Scholar 

  • Lange, Y., 1992, Tracking cell cholesterol with cholesterol oxidase. J. Lipid Res. 33: 315–321.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Dolde, J., Steck, T.L., 1981, The rate of transmembrane movement of cholesterol in the human erythrocyte. J. Biol. Chem. 256: 5321–5323.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Matthies, H., Steck, T.L., 1984, Cholesterol oxidase susceptibility of the red cell membrane. Biochim. Biophys. Acta 769: 551–562.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Matthies, H.J., 1984, Transfer of cholesterol from its site of synthesis to the plasma membrane. J. Biol. Chem. 259: 14624–14630.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Strebel, F., Steck, T.L., 1993, Role of the plasma membrane in cholesterol esterification in rat hepatoma cells. J. Biol. Chem. 268: 13838–13843.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Swaisgood, M.H., Ramos, B.V., Steck, T.L., 1989, Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J. Biol. Chem. 264: 3786–3793.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Ye, J., Steck, T.L., 2004, How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids. Proc. Natl. Acad. Sci. U. S. A 101: 11664–11667.

    CAS  PubMed  Google Scholar 

  • Lange, Y., Ye, J., Steck, T.L., 2005, Activation of membrane cholesterol by displacement from phospholipids. J. Biol. Chem. 280: 36126–36131.

    CAS  PubMed  Google Scholar 

  • Lascombe, M.B., Ponchet, M., Venard, P., Milat, M.L., Blein, J.P., Prange, T., 2002, The 1.45 A resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallogr. D. Biol. Crystallogr. 58: 1442–1447.

    PubMed  Google Scholar 

  • Lee, K.A., Fuda, H., Lee, Y.C., Negishi, M., Strott, C.A., Pedersen, L.C., 2003, Crystal structure of human cholesterol sulfotransferase (SULT2B1b) in the presence of pregnenolone and 3'-phosphoadenosine 5'-phosphate. Rationale for specificity differences between prototypical SULT2A1 and the SULT2BG1 isoforms. J. Biol. Chem. 278: 44593–44599.

    CAS  PubMed  Google Scholar 

  • Li, H., Yao, Z., Degenhardt, B., Teper, G., Papadopoulos, V., 2001, Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc. Natl. Acad. Sci. U. S. A 98: 1267–1272.

    CAS  PubMed  Google Scholar 

  • Li, J., Vrielink, A., Brick, P., Blow, D.M., 1993, Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry 32: 11507–11515.

    CAS  PubMed  Google Scholar 

  • Li, Z., Bittman, R., 2007, Synthesis and spectral properties of cholesterol- and FTY720-containing boron dipyrromethene dyes. J. Org. Chem. 72: 8376–8382.

    CAS  PubMed  Google Scholar 

  • Li, Z., Mintzer, E., Bittman, R., 2006, First synthesis of free cholesterol-BODIPY conjugates. J. Org. Chem. 71: 1718–1721.

    CAS  PubMed  Google Scholar 

  • Lichtenberg, D., Goni, F.M., Heerklotz, H., 2005, Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30: 430–436.

    CAS  PubMed  Google Scholar 

  • Liou, H.L., Dixit, S.S., Xu, S., Tint, G.S., Stock, A.M., Lobel, P., 2006, NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J. Biol. Chem. 281: 36710–36723.

    CAS  PubMed  Google Scholar 

  • Liscum, L., Munn, N.J., 1999, Intracellular cholesterol transport. Biochim. Biophys. Acta 1438: 19–37.

    CAS  PubMed  Google Scholar 

  • Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., Dietschy, J.M., 2009a, Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc. Natl. Acad. Sci. U. S. A 106: 2377–2382.

    CAS  PubMed  Google Scholar 

  • Liu, R., Lu, P., Chu, J.W., Sharom, F.J., 2009b, Characterization of fluorescent sterol binding to purified human NPC1. J. Biol. Chem. 284: 1840–1852.

    CAS  PubMed  Google Scholar 

  • Lopes, S.C., Goormaghtigh, E., Cabral, B.J., Castanho, M.A., 2004, Filipin orientation revealed by linear dichroism. Implication for a model of action. J. Am. Chem. Soc. 126: 5396–5402.

    CAS  PubMed  Google Scholar 

  • Loura, L.M., Fedorov, A., Prieto, M., 2001, Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. Biochim. Biophys. Acta 1511: 236–243.

    CAS  PubMed  Google Scholar 

  • Macdonald, J.L., Pike, L.J., 2005, A simplified method for the preparation of detergent-free lipid rafts. J. Lipid Res. 46: 1061–1067.

    CAS  PubMed  Google Scholar 

  • MacLachlan, J., Wotherspoon, A.T., Ansell, R.O., Brooks, C.J., 2000, Cholesterol oxidase: sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol. 72: 169–195.

    CAS  PubMed  Google Scholar 

  • Madore, N., Smith, K.L., Graham, C.H., Jen, A., Brady, K., Hall, S., Morris, R., 1999, Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18: 6917–6926.

    CAS  PubMed  Google Scholar 

  • Mahammad, S., Parmryd, I., 2008, Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. Biochim. Biophys. Acta 1778: 1251–1258.

    CAS  PubMed  Google Scholar 

  • Martin, O.C., Comly, M.E., Blanchette-Mackie, E.J., Pentchev, P.G., Pagano, R.E., 1993, Cholesterol deprivation affects the fluorescence properties of a ceramide analog at the Golgi apparatus of living cells. Proc. Natl. Acad. Sci. U. S. A 90: 2661–2665.

    CAS  PubMed  Google Scholar 

  • Marzesco, A.M., Wilsch-Brauninger, M., Dubreuil, V., Janich, P., Langenfeld, K., Thiele, C., Huttner, W.B., Corbeil, D., 2009, Release of extracellular membrane vesicles from microvilli of epithelial cells is enhanced by depleting membrane cholesterol. FEBS Lett. 583: 897–902.

    CAS  PubMed  Google Scholar 

  • Mast, N., White, M.A., Bjorkhem, I., Johnson, E.F., Stout, C.D., Pikuleva, I.A., 2008, Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc. Natl. Acad. Sci. U. S. A 105: 9546–9551.

    CAS  PubMed  Google Scholar 

  • Mattjus, P., Bittman, R., Vilcheze, C., Slotte, J.P., 1995, Lateral domain formation in cholesterol/phospholipid monolayers as affected by the sterol side chain conformation. Biochim. Biophys. Acta 1240: 237–247.

    PubMed  Google Scholar 

  • Matyash, V., Geier, C., Henske, A., Mukherjee, S., Hirsh, D., Thiele, C., Grant, B., Maxfield, F.R., Kurzchalia, T.V., 2001, Distribution and transport of cholesterol in Caenorhabditis elegans. Mol. Biol. Cell 12: 1725–1736.

    CAS  PubMed  Google Scholar 

  • McIntosh, A.L., Gallegos, A.M., Atshaves, B.P., Storey, S.M., Kannoju, D., Schroeder, F., 2003, Fluorescence and multiphoton imaging resolve unique structural forms of sterol in membranes of living cells. J. Biol. Chem. 278: 6384–6403.

    CAS  PubMed  Google Scholar 

  • McIntyre, J.C., Sleight, R.G., 1991, Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30: 11819–11827.

    CAS  PubMed  Google Scholar 

  • Megha, B.O., London, E., 2006, Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. J. Biol. Chem. 281: 21903–21913.

    CAS  PubMed  Google Scholar 

  • Middlemas, D.S., Raftery, M.A., 1987, Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry 26: 1219–1223.

    CAS  PubMed  Google Scholar 

  • Mikes, V., Milat, M.L., Ponchet, M., Ricci, P., Blein, J.P., 1997, The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett. 416: 190–192.

    CAS  PubMed  Google Scholar 

  • Mintzer, E.A., Waarts, B.L., Wilschut, J., Bittman, R., 2002, Behavior of a photoactivatable analog of cholesterol, 6- photocholesterol, in model membranes. FEBS Lett. 510: 181–184.

    CAS  PubMed  Google Scholar 

  • Mobius, W., Ohno-Iwashita, Y., van Donselaar, E.G., Oorschot, V.M., Shimada, Y., Fujimoto, T., Heijnen, H.F., Geuze, H.J., Slot, J.W., 2002, Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50: 43–55.

    CAS  PubMed  Google Scholar 

  • Mondal, M., Mesmin, B., Mukherjee, S., Maxfield, F.R., 2009, Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol. Biol. Cell 20: 581–588.

    CAS  PubMed  Google Scholar 

  • Monnaert, V., Tilloy, S., Bricout, H., Fenart, L., Cecchelli, R., Monflier, E., 2004, Behavior of alpha-, beta-, and gamma-cyclodextrins and their derivatives on an in vitro model of blood-brain barrier. J. Pharmacol. Exp. Ther. 310: 745–751.

    CAS  PubMed  Google Scholar 

  • Morrot, G., Bureau, J.F., Roux, M., Maurin, L., Favre, E., Devaux, P.F., 1987, Orientation and vertical fluctuations of spin-labeled analogues of cholesterol and androstanol in phospholipid bilayers. Biochim. Biophys. Acta 897: 341–345.

    CAS  PubMed  Google Scholar 

  • Mukherjee, S., Chattopadhyay, A., 1996, Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry 35: 1311–1322.

    CAS  PubMed  Google Scholar 

  • Mukherjee, S., Zha, X., Tabas, I., Maxfield, F.R., 1998, Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 75: 1915–1925.

    CAS  PubMed  Google Scholar 

  • Muller, P., Herrmann, A., 2002, Rapid transbilayer movement of spin-labeled steroids in human erythrocytes and in liposomes. Biophys. J. 82: 1418–1428.

    CAS  PubMed  Google Scholar 

  • Munro, S., 2003, Lipid rafts: elusive or illusive? Cell 115: 377–388.

    CAS  PubMed  Google Scholar 

  • Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V., Simons, K., 1995, VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. U. S. A 92: 10339–10343.

    CAS  PubMed  Google Scholar 

  • Murcia, M., Faraldo-Gomez, J.D., Maxfield, F.R., Roux, B., 2006, Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J. Lipid Res. 47: 2614–2630.

    CAS  PubMed  Google Scholar 

  • Nabi, I.R., Le, P.U., 2003, Caveolae/raft-dependent endocytosis. J. Cell Biol. 161: 673–677.

    CAS  PubMed  Google Scholar 

  • Nelson, L.D., Johnson, A.E., London, E., 2008, How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. J. Biol. Chem. 283: 4632–4642.

    CAS  PubMed  Google Scholar 

  • Nemecz, G., Fontaine, R.N., Schroeder, F., 1988, A fluorescence and radiolabel study of sterol exchange between membranes. Biochim. Biophys. Acta 943: 511–521.

    CAS  PubMed  Google Scholar 

  • Nemecz, G., Schroeder, F., 1991, Selective binding of cholesterol by recombinant fatty acid binding proteins. J. Biol. Chem. 266: 17180–17186.

    CAS  PubMed  Google Scholar 

  • Ohgami, N., Ko, D.C., Thomas, M., Scott, M.P., Chang, C.C., Chang, T.Y., 2004, Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc. Natl. Acad. Sci. U. S. A 101: 12473–12478.

    CAS  PubMed  Google Scholar 

  • Ohno-Iwashita, Y., Iwamoto, M., Ando, S., Iwashita, S., 1992, Effect of lipidic factors on membrane cholesterol topology–mode of binding of theta-toxin to cholesterol in liposomes. Biochim. Biophys. Acta 1109: 81–90.

    CAS  PubMed  Google Scholar 

  • Ohtani, Y., Irie, T., Uekama, K., Fukunaga, K., Pitha, J., 1989, Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem. 186: 17–22.

    CAS  PubMed  Google Scholar 

  • Okamoto, Y., Ninomiya, H., Miwa, S., Masaki, T., 2000, Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells. J. Biol. Chem. 275: 6439–6446.

    CAS  PubMed  Google Scholar 

  • Okamura, N., Kiuchi, S., Tamba, M., Kashima, T., Hiramoto, S., Baba, T., Dacheux, F., Dacheux, J.L., Sugita, Y., Jin, Y.Z., 1999, A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim. Biophys. Acta 1438: 377–387.

    CAS  PubMed  Google Scholar 

  • Orci, L., Perrelet, A., Montesano, R., 1983, Differential filipin labeling of the luminal membranes lining the pancreatic acinus. J. Histochem. Cytochem. 31: 952–955.

    CAS  PubMed  Google Scholar 

  • Ottico, E., Prinetti, A., Prioni, S., Giannotta, C., Basso, L., Chigorno, V., Sonnino, S., 2003, Dynamics of membrane lipid domains in neuronal cells differentiated in culture. J. Lipid Res. 44: 2142–2151.

    CAS  PubMed  Google Scholar 

  • Palmer, C.P., Mahen, R., Schnell, E., Djamgoz, M.B., Aydar, E., 2007, Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res. 67: 11166–11175.

    CAS  PubMed  Google Scholar 

  • Palmer, M., 2001, The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39: 1681–1689.

    CAS  PubMed  Google Scholar 

  • Pang, L., Graziano, M., Wang, S., 1999, Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38: 12003–12011.

    CAS  PubMed  Google Scholar 

  • Papanikolaou, A., Papafotika, A., Murphy, C., Papamarcaki, T., Tsolas, O., Drab, M., Kurzchalia, T.V., Kasper, M., Christoforidis, S., 2005, Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39. J. Biol. Chem. 280: 26406–26414.

    CAS  PubMed  Google Scholar 

  • Patzer, E.J., Wagner, R.R., 1978, Cholesterol oxidase as a probe for studying membrane organisation. Nature 274: 394–395.

    CAS  PubMed  Google Scholar 

  • Pelletier, R.M., Vitale, M.L., 1994, Filipin vs enzymatic localization of cholesterol in guinea pig, mink, and mallard duck testicular cells. J. Histochem. Cytochem. 42: 1539–1554.

    CAS  PubMed  Google Scholar 

  • Persaud-Sawin, D.A., Lightcap, S., Harry, G.J., 2009, Isolation of rafts from mouse brain tissue by a detergent-free method. J. Lipid Res. 50: 759–767.

    CAS  PubMed  Google Scholar 

  • Petrescu, A.D., Gallegos, A.M., Okamura, Y., Strauss, J.F., III, Schroeder, F., 2001, Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol domain dynamics. J. Biol. Chem. 276: 36970–36982.

    CAS  PubMed  Google Scholar 

  • Petrescu, A.D., Vespa, A., Huang, H., McIntosh, A.L., Schroeder, F., Kier, A.B., 2009, Fluorescent sterols monitor cell penetrating peptide Pep-1 mediated uptake and intracellular targeting of cargo protein in living cells. Biochim. Biophys. Acta 1788: 425–441.

    CAS  PubMed  Google Scholar 

  • Pipalia, N.H., Hao, M., Mukherjee, S., Maxfield, F.R., 2007, Sterol, protein and lipid trafficking in Chinese hamster ovary cells with Niemann-Pick type C1 defect. Traffic. 8: 130–141.

    Google Scholar 

  • Prigent, D., Alouf, J.E., 1976, Interaction of steptolysin O with sterols. Biochim. Biophys. Acta 443: 288–300.

    CAS  PubMed  Google Scholar 

  • Prior, I.A., Harding, A., Yan, J., Sluimer, J., Parton, R.G., Hancock, J.F., 2001, GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell Biol. 3: 368–375.

    CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Chattopadhyay, A., 2004, Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochim. Biophys. Acta 1663: 188–200.

    CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Chattopadhyay, A., 2006, Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45: 295–333.

    CAS  PubMed  Google Scholar 

  • Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A., 2005, Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin(1A) receptors. Biochem. Biophys. Res. Commun. 331: 422–427.

    CAS  PubMed  Google Scholar 

  • Qiu, L., Lewis, A., Como, J., Vaughn, M.W., Huang, J., Somerharju, P., Virtanen, J., Cheng, K.H., 2009, Cholesterol modulates the interaction of beta-amyloid peptide with lipid bilayers. Biophys. J. 96: 4299–4307.

    CAS  PubMed  Google Scholar 

  • Radhakrishnan, A., McConnell, H.M., 2000, Chemical activity of cholesterol in membranes. Biochemistry 39: 8119–8124.

    CAS  PubMed  Google Scholar 

  • Radhakrishnan, A., Sun, L.P., Kwon, H.J., Brown, M.S., Goldstein, J.L., 2004, Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol. Cell 15: 259–268.

    CAS  PubMed  Google Scholar 

  • Raghuraman, H., Chattopadhyay, A., 2004, Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys. J. 87: 2419–2432.

    CAS  PubMed  Google Scholar 

  • Ramachandran, R., Heuck, A.P., Tweten, R.K., Johnson, A.E., 2002, Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol. 9: 823–827.

    CAS  PubMed  Google Scholar 

  • Reid, P.C., Sakashita, N., Sugii, S., Ohno-Iwashita, Y., Shimada, Y., Hickey, W.F., Chang, T.Y., 2004, A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. J. Lipid Res. 45: 582–591.

    CAS  PubMed  Google Scholar 

  • Reitz, J., Gehrig-Burger, K., Strauss, J.F., III, Gimpl, G., 2008, Cholesterol interaction with the related steroidogenic acute regulatory lipid-transfer (START) domains of StAR (STARD1) and MLN64 (STARD3). FEBS J. 275: 1790–1802.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Agudo, D., Ren, S., Hylemon, P.B., Redford, K., Natarajan, R., Del, C.A., Gil, G., Pandak, W.M., 2005, Human StarD5, a cytosolic StAR-related lipid binding protein. J. Lipid Res. 46: 1615–1623.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Agudo, D., Ren, S., Wong, E., Marques, D., Redford, K., Gil, G., Hylemon, P., Pandak, W.M., 2008, Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J. Lipid Res. 49: 1409–1419.

    CAS  PubMed  Google Scholar 

  • Romanowski, M.J., Soccio, R.E., Breslow, J.L., Burley, S.K., 2002, Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc. Natl. Acad. Sci. U. S. A 99: 6949–6954.

    CAS  PubMed  Google Scholar 

  • Roper, K., Corbeil, D., Huttner, W.B., 2000, Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2: 582–592.

    CAS  PubMed  Google Scholar 

  • Rossjohn, J., Feil, S.C., McKinstry, W.J., Tweten, R.K., Parker, M.W., 1997, Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89: 685–692.

    CAS  PubMed  Google Scholar 

  • Rossjohn, J., Polekhina, G., Feil, S.C., Morton, C.J., Tweten, R.K., Parker, M.W., 2007, Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J. Mol. Biol. 367: 1227–1236.

    CAS  PubMed  Google Scholar 

  • Rukmini, R., Rawat, S.S., Biswas, S.C., Chattopadhyay, A., 2001, Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys. J. 81: 2122–2134.

    CAS  PubMed  Google Scholar 

  • Sato, S.B., Ishii, K., Makino, A., Iwabuchi, K., Yamaji-Hasegawa, A., Senoh, Y., Nagaoka, I., Sakuraba, H., Kobayashi, T., 2004, Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 279: 23790–23796.

    CAS  PubMed  Google Scholar 

  • Scheidt, H.A., Muller, P., Herrmann, A., Huster, D., 2003, The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J. Biol. Chem. 278: 45563–45569.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., 1984, Fluorescent sterols: probe molecules of membrane structure and function. Prog. Lipid Res. 23: 97–113.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., Butko, P., Nemecz, G., Scallen, T.J., 1990, Interaction of fluorescent delta 5,7,9(11),22-ergostatetraen-3 beta-ol with sterol carrier protein-2. J. Biol. Chem. 265: 151–157.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., Dempsey, M.E., Fischer, R.T., 1985, Sterol and squalene carrier protein interactions with fluorescent delta 5,7,9(11)-cholestatrien-3 beta-ol. J. Biol. Chem. 260: 2904–2911.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., Frolov, A.A., Murphy, E.J., Atshaves, B.P., Jefferson, J.R., Pu, L., Wood, W.G., Foxworth, W.B., Kier, A.B., 1996, Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc. Soc. Exp. Biol. Med. 213: 150–177.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., Nemecz, G., Gratton, E., Barenholz, Y., Thompson, T.E., 1988, Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles. Biophys. Chem. 32: 57–72.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., Nemecz, G., Wood, W.G., Joiner, C., Morrot, G., yraut-Jarrier, M., Devaux, P.F., 1991, Transmembrane distribution of sterol in the human erythrocyte. Biochim. Biophys. Acta 1066: 183–192.

    CAS  PubMed  Google Scholar 

  • Schroeder, F., Woodford, J.K., Kavecansky, J., Wood, W.G., Joiner, C., 1995, Cholesterol domains in biological membranes. Mol. Membr. Biol. 12: 113–119.

    CAS  PubMed  Google Scholar 

  • Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K., 2003, Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. U. S. A 100: 5795–5800.

    CAS  PubMed  Google Scholar 

  • Severs, N.J., Simons, H.L., 1983, Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane. Nature 303: 637–638.

    CAS  PubMed  Google Scholar 

  • Shah, M.B., Sehgal, P.B., 2007, Nondetergent isolation of rafts. Methods Mol. Biol. 398: 21–28.

    CAS  PubMed  Google Scholar 

  • Shaw, A.S., 2006, Lipid rafts: now you see them, now you don’t. Nat. Immunol. 7: 1139–1142.

    CAS  PubMed  Google Scholar 

  • Shaw, J.E., Epand, R.F., Epand, R.M., Li, Z., Bittman, R., Yip, C.M., 2006, Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys. J. 90: 2170–2178.

    CAS  PubMed  Google Scholar 

  • Sheets, E.D., Holowka, D., Baird, B., 1999, Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcepsilonRI and their association with detergent-resistant membranes. J. Cell Biol. 145: 877–887.

    CAS  PubMed  Google Scholar 

  • Shimada, Y., Maruya, M., Iwashita, S., Ohno-Iwashita, Y., 2002, The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur. J. Biochem. 269: 6195–6203.

    CAS  PubMed  Google Scholar 

  • Shrivastava, S., Haldar, S., Gimpl, G., Chattopadhyay, A., 2009, Orientation and dynamics of a novel fluorescent cholesterol analogue in membranes of varying phase. J. Phys. Chem. B 113: 4475–4481.

    CAS  PubMed  Google Scholar 

  • Sieber, J.J., Willig, K.I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G., Rammner, B., Eggeling, C., Hell, S.W., Grubmuller, H., Lang, T., 2007, Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317: 1072–1076.

    CAS  PubMed  Google Scholar 

  • Simons, K., Ikonen, E., 1997, Functional rafts in cell membranes. Nature 387: 569–572.

    CAS  PubMed  Google Scholar 

  • Simons, K., Toomre, D., 2000, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1: 31–39.

    CAS  PubMed  Google Scholar 

  • Simons, K., van, M.G., 1988, Lipid sorting in epithelial cells. Biochemistry 27: 6197–6202.

    CAS  PubMed  Google Scholar 

  • Simons, M., Kramer, E.M., Thiele, C., Stoffel, W., Trotter, J., 2000, Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J. Cell Biol. 151: 143–154.

    CAS  PubMed  Google Scholar 

  • Sjogren, B., Hamblin, M.W., Svenningsson, P., 2006, Cholesterol depletion reduces serotonin binding and signaling via human 5-HT(7(a)) receptors. Eur. J. Pharmacol. 552: 1–10.

    PubMed  Google Scholar 

  • Slimane, T.A., Trugnan, G., Van IJzendoorn, S.C., Hoekstra, D., 2003, Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains. Mol. Biol. Cell 14: 611–624.

    CAS  PubMed  Google Scholar 

  • Slotte, J.P., Hedstrom, G., Rannstrom, S., Ekman, S., 1989, Effects of sphingomyelin degradation on cell cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior. Biochim. Biophys. Acta 985: 90–96.

    CAS  PubMed  Google Scholar 

  • Slotte, J.P., Mattjus, P., 1995, Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface–a comparative study with two different reporter molecules. Biochim. Biophys. Acta 1254: 22–29.

    PubMed  Google Scholar 

  • Smart, E.J., Ying, Y.S., Conrad, P.A., Anderson, R.G., 1994, Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127: 1185–1197.

    CAS  PubMed  Google Scholar 

  • Smart, E.J., Ying, Y.S., Mineo, C., Anderson, R.G., 1995, A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. U. S. A 92: 10104–10108.

    CAS  PubMed  Google Scholar 

  • Smutzer, G., Crawford, B.F., Yeagle, P.L., 1986, Physical properties of the fluorescent sterol probe dehydroergosterol. Biochim. Biophys. Acta 862: 361–371.

    CAS  PubMed  Google Scholar 

  • Soltani, C.E., Hotze, E.M., Johnson, A.E., Tweten, R.K., 2007, Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc. Natl. Acad. Sci. U. S. A 104: 20226–20231.

    CAS  PubMed  Google Scholar 

  • Song, K.S., Li, S., Okamoto, T., Quilliam, L.A., Sargiacomo, M., Lisanti, M.P., 1996, Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271: 9690–9697.

    CAS  PubMed  Google Scholar 

  • Sparrow, C.P., Patel, S., Baffic, J., Chao, Y.S., Hernandez, M., Lam, M.H., Montenegro, J., Wright, S.D., Detmers, P.A., 1999, A fluorescent cholesterol analog traces cholesterol absorption in hamsters and is esterified in vivo and in vitro. J. Lipid Res. 40: 1747–1757.

    CAS  PubMed  Google Scholar 

  • Spencer, T.A., Wang, P., Li, D., Russel, J.S., Blank, D.H., Huuskonen, J., Fielding, P.E., Fielding, C.J., 2004, Benzophenone-containing cholesterol surrogates: synthesis and biological evaluation. J. Lipid Res. 45: 1510–1518.

    CAS  PubMed  Google Scholar 

  • Spencer, T.A., Wang, P., Popovici-Muller, J.V., Peltan, I.D., Fielding, P.E., Fielding, C.J., 2006, Preparation and biochemical evaluation of fluorenone-containing lipid analogs. Bioorg. Med. Chem. Lett. 16: 3000–3004.

    CAS  PubMed  Google Scholar 

  • Steck, T.L., Ye, J., Lange, Y., 2002, Probing red cell membrane cholesterol movement with cyclodextrin. Biophys. J. 83: 2118–2125.

    CAS  PubMed  Google Scholar 

  • Steer, C.J., Bisher, M., Blumenthal, R., Steven, A.C., 1984, Detection of membrane cholesterol by filipin in isolated rat liver coated vesicles is dependent upon removal of the clathrin coat. J. Cell Biol. 99: 315–319.

    CAS  PubMed  Google Scholar 

  • Stoffel, W., Klotzbucher, R., 1978, Inhibition of cholesterol synthesis in cultured cells by 25-azidonorcholesterol. Hoppe Seylers. Z. Physiol Chem. 359: 199–209.

    CAS  PubMed  Google Scholar 

  • Sugii, S., Reid, P.C., Ohgami, N., Shimada, Y., Maue, R.A., Ninomiya, H., Ohno-Iwashita, Y., Chang, T.Y., 2003, Biotinylated theta toxin derivative as a probe to examine intracellular cholesterol-rich domains in normal and Niemann-pick type C1 cells. J. Lipid Res. 44: 1033–1041.

    Google Scholar 

  • Takahashi, M., Murate, M., Fukuda, M., Sato, S.B., Ohta, A., Kobayashi, T., 2007, Cholesterol controls lipid endocytosis through Rab11. Mol. Biol. Cell 18: 2667–2677.

    CAS  PubMed  Google Scholar 

  • Tampe, R., von, L.A., Galla, H.J., 1991, Glycophorin-induced cholesterol-phospholipid domains in dimyristoylphosphatidylcholine bilayer vesicles. Biochemistry 30: 4909–4916.

    CAS  PubMed  Google Scholar 

  • Tashiro, Y., Yamazaki, T., Shimada, Y., Ohno-Iwashita, Y., Okamoto, K., 2004, Axon-dominant localization of cell-surface cholesterol in cultured hippocampal neurons and its disappearance in Niemann-Pick type C model cells. Eur. J. Neurosci. 20: 2015–2021.

    PubMed  Google Scholar 

  • Terasawa, T., Ikekawa, N., Morisaki, M., 1986, Syntheses of cholesterol analogs with a carbene-generating substituent on the side chain. Chem. Pharm. Bull. 34: 931–934.

    CAS  Google Scholar 

  • Thiele, C., Hannah, M.J., Fahrenholz, F., Huttner, W.B., 2000, Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2: 42–49.

    CAS  PubMed  Google Scholar 

  • Tserentsoodol, N., Sztein, J., Campos, M., Gordiyenko, N.V., Fariss, R.N., Lee, J.W., Fliesler, S.J., Rodriguez, I.R., 2006, Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol. Vis. 12: 1306–1318.

    CAS  PubMed  Google Scholar 

  • Tsujishita, Y., Hurley, J.H., 2000, Structure and lipid transport mechanism of a StAR-related domain. Nat. Struct. Biol. 7: 408–414.

    CAS  PubMed  Google Scholar 

  • Tweten, R.K., Parker, M.W., Johnson, A.E., 2001, The cholesterol-dependent cytolysins. Curr. Top. Microbiol. Immunol. 257: 15–33.

    CAS  PubMed  Google Scholar 

  • Umashankar, M., Sanchez-San, M.C., Liao, M., Reilly, B., Guo, A., Taylor, G., Kielian, M., 2008, Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J. Virol. 82: 9245–9253.

    CAS  PubMed  Google Scholar 

  • Vainio, S., Jansen, M., Koivusalo, M., Rog, T., Karttunen, M., Vattulainen, I., Ikonen, E., 2006, Significance of sterol structural specificity. Desmosterol cannot replace cholesterol in lipid rafts. J. Biol. Chem. 281: 348–355.

    CAS  PubMed  Google Scholar 

  • Vaughan, A.M., Oram, J.F., 2005, ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J. Biol. Chem. 280: 30150–30157.

    CAS  PubMed  Google Scholar 

  • Vincent, N., Genin, C., Malvoisin, E., 2002, Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim. Biophys. Acta 1567: 157–164.

    CAS  PubMed  Google Scholar 

  • Vrielink, A., Lloyd, L.F., Blow, D.M., 1991, Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J. Mol. Biol. 219: 533–554.

    CAS  PubMed  Google Scholar 

  • Waheed, A.A., Shimada, Y., Heijnen, H.F., Nakamura, M., Inomata, M., Hayashi, M., Iwashita, S., Slot, J.W., Ohno-Iwashita, Y., 2001, Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl. Acad. Sci. U. S. A 98: 4926–4931.

    CAS  PubMed  Google Scholar 

  • Wang, M.M., Olsher, M., Sugar, I.P., Chong, P.L., 2004, Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes. Biochemistry 43: 2159–2166.

    CAS  PubMed  Google Scholar 

  • Watson, K.C., Kerr, E.J., 1974, Sterol structural requirements for inhibition of streptolysin O activity. Biochem. J. 140: 95–98.

    CAS  PubMed  Google Scholar 

  • Wiegand, V., Chang, T.Y., Strauss, J.F., III, Fahrenholz, F., Gimpl, G., 2003, Transport of plasma membrane-derived cholesterol and the function of Niemann-Pick C1 Protein. FASEB J. 17: 782–784.

    CAS  PubMed  Google Scholar 

  • Wustner, D., 2007, Plasma membrane sterol distribution resembles the surface topography of living cells. Mol. Biol. Cell 18: 211–228.

    CAS  PubMed  Google Scholar 

  • Wustner, D., Herrmann, A., Hao, M., Maxfield, F.R., 2002, Rapid nonvesicular transport of sterol between the plasma membrane domains of polarized hepatic cells. J. Biol. Chem. 277: 30325–30336.

    Google Scholar 

  • Wustner, D., Mondal, M., Huang, A., Maxfield, F.R., 2004, Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells. J. Lipid Res. 45: 427–437.

    PubMed  Google Scholar 

  • Xu, S., Benoff, B., Liou, H.L., Lobel, P., Stock, A.M., 2007, Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J. Biol. Chem. 282: 23525–23531.

    CAS  PubMed  Google Scholar 

  • Xu, X., London, E., 2000, The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843–849.

    CAS  PubMed  Google Scholar 

  • Yancey, P.G., Rodrigueza, W.V., Kilsdonk, E.P., Stoudt, G.W., Johnson, W.J., Phillips, M.C., Rothblat, G.H., 1996, Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 271: 16026–16034.

    CAS  PubMed  Google Scholar 

  • Yeagle, P.L., 1985, Cholesterol and the cell membrane. Biochim. Biophys. Acta 822: 267–287.

    CAS  PubMed  Google Scholar 

  • Yeagle, P.L., Albert, A.D., Boesze-Battaglia, K., Young, J., Frye, J., 1990, Cholesterol dynamics in membranes. Biophys. J. 57: 413–424.

    CAS  PubMed  Google Scholar 

  • Yin, Y., Liu, P., Anderson, R.G., Sampson, N.S., 2002, Construction of a catalytically inactive cholesterol oxidase mutant: investigation of the interplay between active site-residues glutamate 361 and histidine 447. Arch. Biochem. Biophys. 402: 235–242.

    CAS  PubMed  Google Scholar 

  • Yue, Q.K., Kass, I.J., Sampson, N.S., Vrielink, A., 1999, Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry 38: 4277–4286.

    CAS  PubMed  Google Scholar 

  • Zhang, W., McIntosh, A.L., Xu, H., Wu, D., Gruninger, T., Atshaves, B., Liu, J.C., Schroeder, F., 2005, Structural analysis of sterol distributions in the plasma membrane of living cells. Biochemistry 44: 2864–2884.

    CAS  PubMed  Google Scholar 

  • Zidovetzki, R., Levitan, I., 2007, Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768: 1311–1324.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Christa Wolpert for technical assistance and Falk Fahrenholz, Katja Gehrig-Burger, Volker Wiegand, Conny Trossen, and Julian Reitz for discussions and cooperations in cholesterol research over recent years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Gimpl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gimpl, G. (2010). Cholesterol–Protein Interaction: Methods and Cholesterol Reporter Molecules. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_1

Download citation

Publish with us

Policies and ethics