Skip to main content

Ecological Factors Influencing Pea Aphid Outbreaks in the US Pacific Northwest

  • Chapter
  • First Online:
Aphid Biodiversity under Environmental Change

Abstract

This chapter documents the history of pea aphid (Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae)) outbreaks in the U.S. Pacific Northwest, with particular attention to the periodicity of outbreaks on field peas (Pisum sativum L.) in the Palouse region of eastern Washington over a 26 year period (1983–2008). In the Palouse region, grain legume crops are devastated by pea aphid feeding damage and legume viruses during outbreak years. Various abiotic and biotic factors and their possible controlling influence on changes in pea aphid densities, with emphasis on winter temperatures within the context of climate change, are presented and discussed. Mild winters, long thought to herald spring pea aphid outbreaks, are defined and related to outbreak cycles. While the 26-year database does not demonstrate a consistent link between mild winters and pea aphid outbreaks, it reveals a certain periodicity with outbreaks occurring every 6–9 years in the Palouse region. Warming winter temperatures over several years bridging the 20th and 21st centuries could potentially compress the frequency of outbreaks by accelerating aphid population development on legumes that provide migrants that colonize peas and other spring-sown food legumes in this region. Large plantings of alfalfa (Medicago sativa L.) 60–120 km west and southwest of the Palouse region are thought to be the source of alate aphids that migrate northeast and attain outbreak densities in some years. In conclusion, this chapter delivers a new long-term data set that will improve our understanding of how different abiotic and biotic factors influence the life-history processes of pest aphids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler LS, De Valpine P, Harte J, Call J (2007) Effects of long-term experimental warming on aphid density in the field. J Kans Entomol Soc 80:156–168

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change: direct effects of rising temperatures on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Berryman AA (1987) The theory and classification of outbreaks. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic Press, Inc., San Diego, pp 3–27

    Google Scholar 

  • Black AE, Strand E, Morgan P, Scott JM, Wright RG, Watson C (1998). Biodiversity and land-use history of the Palouse bioregion: pre-European to present, Chapter 10. In: Sisk TD (ed) Perspectives on land-use history of North America: a context for understanding our changing environment. U.S. Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR. http://biology.usgs.gov/luhna/. Accessed 2 Aug 2006

  • Bommarco R, Ekbom B (1995) Phenology and prediction of pea aphid infestations on peas. Int J Pest Manage 41:109–113

    Article  Google Scholar 

  • Bommarco R, Ekbom B (1996) Variation in pea aphid population development in three different habitats. Ecol Entomol 21:235–240

    Article  Google Scholar 

  • Bournoville R (1973) Observations écologiques sur I’hivernation du puceron du pois Acyrthosiphon pisum (Harris) et de ses parasites dans la region de Versailles. Ann de Zool Ecol Anim 5:13–28

    Google Scholar 

  • Bournoville R, Carre S, Badenhausser I, Simon JC, Hennis C, Greze C (2004) Host-races of the pea aphid, Acyrthosiphon pisum: biological criteria and feeding behaviour of clones originating from legumes. In: Simon JC, Dedryver CA, Rispe C, Hullé M (eds) Aphids in a new millennium. INRA Editions, Paris, pp 413–419

    Google Scholar 

  • Bournoville R, Simon JC, Badenhausser I, Girousse C, Guilloux T, Andre S (2000) Clones of the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) distinguished using genetic markers, differ in their damaging efficiency on a resistant alfalfa cultivar. Bull Entomol Res 90:33–39

    Article  PubMed  CAS  Google Scholar 

  • Bronson TE (1935) Observations on winter survival of pea aphid eggs. J Econ Entomol 28: 1030–1036

    Google Scholar 

  • Chang GC, Eigenbrode SD (2004) Delineating the effects of a plant trait on interactions among associated insects. Oecologia 139:123–130

    Article  PubMed  Google Scholar 

  • Chang GC, Neufeld J, Duetting PS, Eigenbrode SD (2004) Waxy bloom in peas influences the performance and behavior of Aphidius ervi, a parasitoid of the pea aphid. Entomol Exp Appl 110:257–265

    Article  Google Scholar 

  • Clement SL 2006. Pea aphid outbreaks and virus epidemics on peas in the U.S. Pacific Northwest: histories, mysteries, and challenges. Online. Plant Health Progress doi:10.1094/PHP-2006-1018-01-RV

    Google Scholar 

  • Clement SL, Elberson LR, Youssef N, Young FL, Evans MA (2004) Cereal aphid and natural enemy populations in cereal production systems in eastern Washington. J Kans Entomol Soc 77:165–173

    Article  Google Scholar 

  • Clement SL, Wightman JA, Hardie DC, Bailey P, Baker G, McDonald G (2000) Opportunities for integrated management of insect pests of grain legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic Publishing, Dordrecht, The Netherlands, pp 467–480

    Chapter  Google Scholar 

  • Cocu N, Conrad K, Harrington R, Rounsevell MDA (2005a) Analysis of spatial patterns at a geographical scale over north-western Europe from point-referenced aphid count data. Bull Entomol Res 95:47–56 http://www.cabi-publishing.org/Journals.asp?PID=16

    Article  PubMed  CAS  Google Scholar 

  • Cocu N, Harrington R, Hutte M, Rounsevell MDA (2005b) Spatial authocorrelation as a tool for identifying the geographical patterns of aphid annual abundance. Agric For Entomol 7:31–43

    Article  Google Scholar 

  • Cocu N, Harrington R, Rounsevell MDA, Worner SP, Hullé M (2004) Geographical location, climate and land use influences on the phenology and numbers of the aphid, Myzus persicae, in Europe. J Biogeogr 31:1–18

    Article  Google Scholar 

  • Cooke WC 1963. Ecology of the pea aphid in the Blue Mountain area of eastern Washington and Oregon. U.S. Department of Agriculture, Agricultural Research Service, Technical Bulletin 1287, Washington DC

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology: an optimization approach. Chapman & Hill, London

    Google Scholar 

  • Dixon AFG, Kindlmann P (1990) Role of plant abundance in determining the abundance of herbivorous insects. Oecologia 83:281–283

    Article  PubMed  CAS  Google Scholar 

  • Duetting PS 2002. Effect of field pea surface wax variation on infection of the pea aphid by the fungal pathogen, Pandora neoaphidis. M.S. Thesis, University of Idaho, Moscow, Idaho

    Google Scholar 

  • Dunn JA, Wright DW (1955) Overwintering egg population of the pea aphid in East Anglia. Bull Entomol Res 46:389–392

    Article  Google Scholar 

  • Eichmann RD (1940) The pea aphid on canning peas in eastern Washington as influenced by alfalfa plantings. J Econ Entomol 33:137–139

    Google Scholar 

  • Eichmann RD, Webster RL 1940. The influence of alfalfa on the abundance of the pea aphid on peas grown for canning in southeastern Washington. Washington Agricultural Experiment Station Bulletin 389, Pullman, Washington

    Google Scholar 

  • Eigenbrode SD, White C, Rohde M, Simon CJ (1998) Behavior and effectiveness of adult Hippodamia convergens (Coleoptera: Coccinellidae) as a predator of Acyrthosiphon pisum on a glossy-wax mutant of Pisum sativum. Environ Entomol 27:902–909

    Google Scholar 

  • Ekbom B (1994) Arthropod predators of the pea aphid, Acyrthosiphon pisum Harr. (Hom., Aphididae) in peas (Pisum sativum L.), clover (Trifolium pretense L.) and alfalfa (Medicago sativa L.). J Appl Entomol 117:469–476 http://www.blacksci.co.uk/products/journals/xjae.htm

    Article  Google Scholar 

  • Elberson LR 1992. Studies of the Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae) and its natural enemies in northern Idaho. M.S. Thesis, University of Idaho, Moscow, Idaho

    Google Scholar 

  • Evans EW (2004) Habitat displacement of North American ladybirds by an introduced species. Ecology 85:637–647

    Article  Google Scholar 

  • Feng M-G, Johnson JB, Kish LP (1990) Survey of entomopathogenic fungi naturally infecting cereal aphids (Homoptera: Aphididae) of irrigated grain crops in southwestern Idaho. Environ Entomol 19:1534–1542

    Google Scholar 

  • Ferrari J, Godfray HCJ, Faulconbridge AS, Prior K, Via S (2006) Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60:1574–1584

    PubMed  Google Scholar 

  • Frazer BD, Gilbert N, Nealis V, Raworth DA (1981) Control of aphid density by a complex of predators. Can Entomol 113:1035–1041

    Article  Google Scholar 

  • Gutierrez AP, Baumgaertner JU, Summers CG (1984) Multitrophic level models of predator prey energetics. III. A case study in an alfalfa ecosystem. Can Entomol 116:950–963

    Article  Google Scholar 

  • Hagedorn DJ (ed) (1984) Compendium of pea diseases. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Halfhill JE, Featherston PE (1973) Inundative releases of Aphidius smithi against Acyrthosiphon pisum. Environ Entomol 2:469–472

    Google Scholar 

  • Halfhill JE, Featherston PE, Dickie AG (1972) History of the Praon and Aphidius parasites of the pea aphid in the Pacific Northwest. Environ Entomol 1:402–405

    Google Scholar 

  • Hampton RO (1983) Pea leaf roll in Northwestern U.S. pea seed production areas. Plant Dis 67:1306–1309 http://www.scisoc.org/pubs/

    Article  Google Scholar 

  • Hampton RO, Weber KA (1983a) Pea streak virus transmission from alfalfa to peas: virus-aphid and virus-host relationships. Plant Dis 67:305–307

    Article  Google Scholar 

  • Hampton RO, Weber KA (1983b) Pea streak and alfalfa mosaic viruses in alfalfa: reservoir of viruses infectious to Pisum peas. Plant Dis 67:308–310

    Article  Google Scholar 

  • Harrington R (2002) Insect pests and global environmental change. In: Douglas I (ed) Encyclopedia of global environmental change. John Wiley and Sons, Ltd., Chichester, UK, pp 1–6

    Google Scholar 

  • Harrington R (2003) Turning up the heat on pests and diseases: a case study for barley yellow dwarf virus. In: The BCPC international congress, crop science and technology: congress proceedings. British Crop Protection Council, Hampshire, UK, pp 1195–1200

    Google Scholar 

  • Harrington R, Clark SJ, Welham SJ, Verrier PJ, Denholm CH, Hulle M, Maurice D, Rounsevell MD, Cocu N (2007) Environmental change and the phenology of European aphids. Glob Chang Biol 13:1550–1564 http://www.blacksci.co.uk/products/journals/gcb.htm

    Article  Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted?. Agric For Entomol 3:233–240 http://www.blackwellpublishing.com/journal.asp?ref=1461-9555

    Article  Google Scholar 

  • Hodgson EW (2007) Aphids in alfalfa. Utah Pests Fact Sheet Ent-107-07. Utah State University Extension, Logan, Utah

    Google Scholar 

  • Homan HW, Stoltz RL, Schotzko DJ (1992) Aphids on peas and lentils and their control. Current information series 748. University of Idaho, Moscow, Idaho

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hutchison W, Hogg DB (1984) Demographic statistics for the pea aphid (Homoptera: Aphididae) in Wisconsin and a comparison with other populations. Environ Entomol 13:1173–1181

    Google Scholar 

  • Johansen C, Baird C, Ritner R, Fisher G, Undurraga J, Lauderdale R (1979) Alfalfa seed insect pest management. Western regional extension publication 0012. Washington State University, Pullman, Washington

    Google Scholar 

  • Johansen CA, Eves JD (1973) Development of a pest management program on alfalfa grown for seed. Environ Entomol 2:515–517

    Google Scholar 

  • Jones PD (1988) Hemispheric surface air temperature variations: recent trends and an update to 1987. J Clim 1:654–660

    Article  Google Scholar 

  • Kaiser WJ, Ramsey MD, Makkouk KM, Bretag TW, Acikġov N, Kumar J, Nutter FW (2000) Foliar diseases of cool season food legumes and their control. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic Publishers, Dordrecht, pp 437–455

    Chapter  Google Scholar 

  • Karley AJ, Parker WE, Pitchford JW, Douglas AE (2004) The mid-season crash in aphid populations: why and how does it occur?. Ecol Entomol 29:383–388 http://www.blacksci.co.uk/products/journals/eent.htm

    Article  Google Scholar 

  • Klein RE, Larsen RC, Kaiser WJ (1991) Virus epidemic of grain legumes in eastern Washington. Plant Dis 75:1186

    Google Scholar 

  • Klowden MJ (2002) Physiological systems in insects. Academic Press, Orlando, FL

    Google Scholar 

  • LaMana MI, Miller JC (1996) Field observations on Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in Oregon. Biol Control 6:232–237

    Article  Google Scholar 

  • Larsen RC, Kaiser WJ, Klein RE (1996) Alfalfa, a non-host of pea enation mosaic virus in Washington State. Can J Plant Sci 76:521–524

    Article  Google Scholar 

  • Lawton JH (1995) The response of insects to environmental change. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London, pp 3–26

    Google Scholar 

  • Markkula M (1963) Studies on the pea aphid, Acyrthosiphon pisum Harris (Hom., Aphididae), with special reference to the difference in the biology of the green and red forms. Ann Agric Fenn Seria Animali Nocentia 2:1–30

    Google Scholar 

  • McVean RIK, Dixon AFG, Harrington R (1999) Causes of regional and yearly variation in pea aphid numbers in eastern England. J Appl Entomol 123:495–502 http://www.blacksci.co.uk/products/journals/xjae.htm

    Article  Google Scholar 

  • McWhorter FP, Cook WC (1958) The hosts and strains of pea enation mosaic virus. Plant Dis Rep 42:51–60

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Clement SL, Summerfield RJ (1995) Production and breeding of lentil. In: Sparks DL (ed) Advances in agronomy. Academic Press, Inc., San Diego, pp 283–332

    Google Scholar 

  • Muehlbauer FJ, Short RW, Kraft JM (1983) Description and culture of dry peas. US Department of Agriculture, Agricultural Research Service, ARM-W-37, Oakland, CA

    Google Scholar 

  • Müller FP (1980) Wirtspflanzen, Generationenfolge und reproductive Isolation infraspezifischer Formen von Acyrthosiphon pisum. Entomol Exp Appl 28:145–157

    Article  Google Scholar 

  • Peccoud J, Ollivier A, Plantegenest M, Simon J-C (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc Natl Acad Sci USA 106: 7495–7500

    Article  PubMed  CAS  Google Scholar 

  • Pickering J, Gutierrez AP (1991) Differential impact of the pathogen, Pandora neoaphidis (R. & H.) Humber (Zygomycetes: Entomophthorales) on the species composition of Acyrthosiphon aphids in alfalfa. Can Entomol 123:315–320

    Article  Google Scholar 

  • Rasmussen LA, Conway H (2004) Climate and glacier variability in western North America. J Climate 17:1804–1815

    Article  Google Scholar 

  • Rethwisch M (2008) Pink form of pea aphid found for first time in Nebraska alfalfa. Crop Watch, University of Nebraska-Lincoln Extension, Lincoln, Nebraska

    Google Scholar 

  • Robeson SM (2004) Trends in time-varying percentiles of daily minimum and maximum temperature over North America. Geophys Res Lett 31:L04203 doi:10.1029/2003GL019019

    Article  Google Scholar 

  • Rockwood LP (1950) Entomogenous fungi of the family Entomophthoraceae in the Pacific Northwest. J Econ Entomol 43:704–707

    Google Scholar 

  • Rockwood LP, Reeher MM (1943) Forecasting outbreaks of the pea aphid on fall-sown annual legumes in the Pacific Northwest. J Econ Entomol 36:832–837

    Google Scholar 

  • Rutledge CE, Robinson A, Eigenbrode SD (2003) Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia 135:39–50

    PubMed  Google Scholar 

  • Sandström J (1994) High variation in host adaptation among clones of the pea aphid, Acyrthosiphon pisum on peas, Pisum sativum. Entomol Exp Appl 71:245–256

    Article  Google Scholar 

  • Sandström J (1996) Temporal changes in host adaptation in the pea aphid, Acyrthosiphon pisum. Ecol Entomol 21:56–62

    Article  Google Scholar 

  • Skirvin DJ, Perry JN, Harrington R (1997) The effect of climate change on an aphid-coccinellid interaction. Glob Chang Biol 3:1–11 http://www.blacksci.co.uk/products/journals/gcb.htm

    Article  Google Scholar 

  • Smatas R, Tamosiunas K, Semaskiene R, Dabkevicius Z, Lazauskas S (2008) Trends in aphid occurrence in spring barley in 1976–2007. J Plant Protect Res 48:275–282

    Google Scholar 

  • Snyder WE, Clevenger GM, Eigenbrode SD (2004) Intraguild predation and successful invasion by introduced beetles. Oecologia 140:559–565

    Article  PubMed  Google Scholar 

  • Snyder WE, Ives AR (2003) Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84:91–107

    Article  Google Scholar 

  • Stoltz RL, Forster RL (1984) Reduction of pea leaf roll of peas (Pisum sativum) with systemic insecticides to control the pea aphid (Homoptera: Aphididae) vector. J Econ Entomol 77: 1537–1541

    CAS  Google Scholar 

  • Thacker JI, Thieme T, Dixon AFG (1997) Forecasting of periodic fluctuations in annual abundance of the bean aphid: the role of density dependence and weather. J Appl Entomol 121:137–145

    Article  Google Scholar 

  • Thackray DJ, Diggle AJ, Berlandier FA, Jones RAC (2004) Forecasting aphid outbreaks and epidemics of cucumber mosaic virus in lupin crops in a Mediterranean-type environment. Virus Res 100:67–82 http://www.elsevier.com/locate/virusres

    Article  PubMed  CAS  Google Scholar 

  • van den Bosch R, Schlinger EI, Lagace CF, Hall JC (1966) Parasitization of Acyrthosiphon pisum by Aphidius smithi, a density dependent process in nature (Homoptera: Aphididae) (Hymenoptera: Aphidiidae). Ecology 47:1049–1055

    Article  Google Scholar 

  • Via S (1991) Specialized host plant performance of pea aphid clones is not altered by experience. Ecology 74:1420–1427

    Article  Google Scholar 

  • Wellings PW, Dixon AFG (1987) The role of weather and natural enemies in determining aphid outbreaks. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic Press, Inc., San Diego, pp 313–346

    Google Scholar 

  • White C 1998. Effects of Pisum sativum surface waxbloom variation on herbivores and predators. M.S. Thesis, University of Idaho, Moscow, Idaho

    Google Scholar 

  • White C, Eigenbrode SD (2000) Effects of surface wax variation in Pisum sativum on herbivorous and entomophagous insects in the field. Environ Entomol 29:773–780

    Article  Google Scholar 

  • Woiwod IP, Harrington R (1994) Flying in the face of change – the rothamsted insect survey. In: Leigh RA, Johnston AE (eds) Long term research in agricultural and ecological sciences. CABI, Wallingford, UK, pp 321–342

    Google Scholar 

  • Young FL, Ogg AG, Boerboom CM, Alldredge JR, Papendick RL (1994) Integration of weed management and tillage practices in spring dry pea production. Agron J 86:868–874 http://agron.scijournals.org/

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Leslie Elberson for unwavering help and assistance with the preparation of this chapter. This work was partially supported by grants to S.D. Eigenbrode (USDA-NRI and USDA-CSREES Risk Assessment and Mitigation Program) (Award No. 2008-51101-0452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Clement .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Clement, S.L., Husebye, D.S., Eigenbrode, S.D. (2010). Ecological Factors Influencing Pea Aphid Outbreaks in the US Pacific Northwest. In: Kindlmann, P., Dixon, A., Michaud, J. (eds) Aphid Biodiversity under Environmental Change. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8601-3_7

Download citation

Publish with us

Policies and ethics