Skip to main content

Implications of Climate Change for Toxoptera citricida (Kirkaldy), a Disease Vector of Citrus in Florida

  • Chapter
  • First Online:
Aphid Biodiversity under Environmental Change

Abstract

Increasing temperatures, elevated CO2 levels, and changes in rainfall patterns are predicted to impact plants and insects, both harmful and beneficial. Toxoptera citricida Kirkaldy (Homoptera: Aphididae), commonly known as the brown citrus aphid (BrCA), is a cosmopolitan pest of citrus and a highly efficient vector of citrus tristeza virus (CTV). Both the pest and the disease pose a serious threat to citrus production in Florida. Temperature is the most important abiotic factor impacting the biology of BrCA and the growth of new citrus shoots on which the aphid depends for development and reproduction. Climate in most parts of the state is humid subtropical, characterized by mild to cool, relatively dry winters and autumns and hot, wet springs and summers. Cool winters, freezes and hot summers limit the aphid’s ability to survive and reproduce, leaving spring as the optimal season for population growth. Mature citrus trees go through a period of winter dormancy followed by a surge of growth in spring and periods of sporadic growth in summer and fall. Any significant rise in average winter temperatures will reduce the severity and duration of cool winter weather and may trigger earlier shoot growth by citrus trees. This would improve aphid survival in winter, provide a food bridge between fall and spring populations, and possibly lead to earlier recruitment of natural enemies, particularly predators. Summers, on the other hand, if warmer and more prolonged would probably be less tolerable for the BrCA and its natural enemies. However, adaptation to environmental change is possible and low aphid populations are observed in the field at temperatures above the upper threshold for development determined under laboratory conditions. The negative impact of rising temperatures on BrCA populations may be more pronounced in the south than elsewhere due to the relatively higher temperatures there, with more beneficial effects evident in the north.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2008) Citrus summary 2006–2007. Florida Agricultural Statistics Service, Florida, Florida Department of Agriculture and Consumer Services. (http://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/cs/2006–07/CS0607all.pdf)

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt ad, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperatures on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Belliure B, Michaud JP (2001) Biology and behavior of Pseudodorus clavatus (F.) (Diptera: Syrphidae), an important predator of citrus aphids. Ann Entomol Soc Am 94:91–96

    Article  Google Scholar 

  • Bezemer TM, Jones TR, Knight KJ (1998) Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116:128–135

    Article  Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Carver M (1978) The black citrus aphids, Toxoptera citricidus (Kirkaldy) and T. aurantii (Boyer de Fonscolombe) (Homoptera: Aphididae). J Aust Entomol Soc 17:263–270

    Article  Google Scholar 

  • Chagas EFD, Neto SS, Braz AJBP, Mateus CPB, Coelho IP (1982) Population fluctuations of pest and predator insects in citrus. Pesqui Agropecu Bras 17:817–824 (in Portuguese, English summary)

    Google Scholar 

  • Chapman RR (1998) The insects. Structure and function. Cambridge University Press, UK

    Book  Google Scholar 

  • Chen E (1984) Long-term climate trend. In: Cold protection guide. Lake-orange extension service, central florida freeze recovery task force. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla, pp 140–143

    Google Scholar 

  • Chen E (1985) Minimum temperature change and freeze probabilities in Florida: 1925–1984. In: Cold protection guide, 1985 revision. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla, pp S1–S5

    Google Scholar 

  • Chen FJ, Gang W, Megha N, Parajulee FG (2007) Impact of elevated CO2 on the third trophic level: a predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Sci Technol 17:313–324

    Article  Google Scholar 

  • Chen F, Ge F, Parajulee MN (2005) Impact of elevated CO2 on tritrophic interaction of Gossypium hirsutum, Aphis gossypii and Leis axyridis. Environ Entomol 34:37–46

    Article  Google Scholar 

  • Cooper WC, Peynado A, Furr JR, Hilgeman RH, Cahoon GA, Boswell SB (1963) Tree growth and fruit quality of Valencia oranges in relation to climate. In Proceedings, American Society of Horticultural Science, 27–29 Aug. 1963, Alexandria, VA. American Society of Horticultural Science, Alexandria, VA, pp 82, 180–192

    Google Scholar 

  • Coviella C, Trumble J (1999) Effects of elevated atmospheric carbon dioxide on insect plant interactions. Conserv Biol 13:700–712

    Article  Google Scholar 

  • Dixon AFG (2000) Aphid ecology. Chapman and Hall, London

    Google Scholar 

  • Dunn JA, Wright DW (1955) Population studies of the pea aphid in East Anglia. Bull Entomol Res 46:369–387

    Article  Google Scholar 

  • EPA 230-F-97–008i (1997) Climate change and Florida

    Google Scholar 

  • Garcia-Luis A, Kanduser M, Santamarina P, Guardiola JL (1992) Low temperature influence on flowering in Citrus: the separation of inductive and bud dormancy releasing effects. Physiol Plant 86:648–652

    Article  Google Scholar 

  • Glantz M, Katz R (1987) African drought and its impacts: revived interest in a recurrent phenomenon. Desertif Control Bull 14:23–32

    Google Scholar 

  • Gottwald TR, Graham JH, Schubert TS (1997) An epidemiological analysis of the spread of citrus canker in urban Miami, Florida, and synergistic interaction with the Asian citrus leafminer. Fruits 52:371–378

    Google Scholar 

  • Halbert SE (1997) Brown citrus aphid: current situation and prognosis. Cit. Ind., April Issue

    Google Scholar 

  • Halbert SE, Brown LG (1996) Toxoptera citricida (Kirkaldy), brown citrus aphid – identification, biology and management strategies. Florida Department of Agriculture & Consumer Services, Division Plant Industry, Entomol. Cir. No. 374

    Google Scholar 

  • Halbert SE, Manjunath KL (2004) Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla Entomol 87:330–353

    Article  Google Scholar 

  • Hall DG, Albrigo LG (2007) Estimating the relative abundance of flush shoots in citrus with implications on monitoring insects associated with flush. HortScience 42:364–368

    Google Scholar 

  • Hall D, Hentz MG, Adair RC (2008) Population ecology and phenology of Diaphorina citri (Hemiptera: Psyllidae) in two Florida citrus groves. Environ Entomol 37:914–924

    Article  PubMed  Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, DeLucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485

    Article  Google Scholar 

  • Huang S, Li G, Zhou C, Fan X, Shen C, Xue M (1993) A climatological study of injury to citrus trees from freezing weather in China. Agric For Meteorol 65:129–138

    Article  Google Scholar 

  • Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric For Entomol 3:153–159

    Article  Google Scholar 

  • Karl TR, Knight RW, Easterling DR, Quayle RG (1996) Indices of climate change for the United States. Bull Am Meteorol Soc 77:279–292

    Article  Google Scholar 

  • Kirkaldy GW (1907) On some peregrine Aphidae in Oahu, Honolulu. Proc Hawaiian Entomol Soc 1:100

    Google Scholar 

  • Knapp JL, Albrigo LG, Browning HW, Bullock RC, Heppner JB, Hall DG, Hoy MA, Nguyen R, Pena JE, Stansly PA (1995) Citrus leafminer, Phyllocnistis citrella Stainton: current status in Florida. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL

    Google Scholar 

  • Komazaki S (1982) Effects of constant temperatures on population growth of three aphid species, Toxoptera citricida (Kirkaldy), Aphis citricola van der Goot, and Aphis gossypii Glover (Homoptera: Aphididae) on citrus. Appl Entomol Zool 17:75–81

    Google Scholar 

  • Liu YH, Tsai JH (2002) Effect of temperature on development, survivorship, and fecundity of Lysiphlebia mirzai (Hymenoptera: Aphidiidae), a parasitoid of Toxoptera citricida (Homoptera: Aphididae). Environ Entomol 31:418–424

    Article  Google Scholar 

  • Liu SS, Zhang GM, Zhu J (1995) Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. Ann Entomol Soc Am 88: 107–119

    Google Scholar 

  • Ma CS, Hau B, Poehling MM (2004) The effect of heat stress on the survival of the rose grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Eur J Entomol 101:327–331

    Google Scholar 

  • Michaud JP (1998) A review of the literature on Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Fla Entomol 81:37–61

    Article  Google Scholar 

  • Michaud JP (1999a) Aggregation by alatae of Toxoptera citricida (Homoptera: Aphididae). Environ Entomol 28:205–211

    Google Scholar 

  • Michaud JP (1999b) Sources of mortality in colonies of the brown citrus aphid, Toxoptera citricida (Homoptera: Aphididae). Biocontrol 44:347–367

    Article  Google Scholar 

  • Michaud JP (2000) Development and reproduction of ladybeetles (Coleoptera: Coccinellidae) on the citrus aphids Aphis spiraecola Patch and Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Biol Control 18:287–297

    Article  Google Scholar 

  • Michaud JP (2001a) Colony density and wing development in Toxoptera citricida (Homoptera: Aphididae). Environ Entomol 30:1047–1051

    Article  Google Scholar 

  • Michaud JP (2001b) Evaluation of green lacewings, Chrysoperla plorabunda Fitch (Neuroptera: Chrysopidae) for augmentative release against brown citrus aphid, Toxoptera citricida (Homoptera: Aphididae) in citrus. J Appl Entomol 125:383–388

    Article  Google Scholar 

  • Michaud JP, Alvarez R (2000) First collection of brown citrus aphid in Quintana Roo, Mexico. Fla Entomol 83:357

    Article  Google Scholar 

  • Michaud JP, Belliure B (2000) Consequences of foundress aggregation in Toxoptera citricida (Homoptera: Aphididae). Ecol Entomol 25:307–314

    Article  Google Scholar 

  • Michaud JP, Browning HW (1999) Seasonal abundance of the brown citrus aphid, Toxoptera citricida (Homoptera: Aphididae) and its natural enemies in Puerto Rico. Fla Entomol 82:424–447

    Article  Google Scholar 

  • Miller KA (1991) Response of Florida citrus growers to the freezes of the 1980s. Climate Res 1:133–144

    Article  Google Scholar 

  • Miller KA, Glantz MH (1988) Climate and economic competitiveness: florida freezes and the global citrus processing industry. Climatic Change 12:135–164

    Article  Google Scholar 

  • Moss GJ (1969) Influence of temperature and photoperiod on flower induction and inflorescence development in sweet orange (Citrus sinensis L. Osbeck). J Hortic Sci 44:311–320

    Google Scholar 

  • Newman JA (2006) Using the output from global circulation models to predict changes in the distribution and abundance of cereal aphids in Canada: a mechanisitic modelling approach. Glob Chang Biol 12:1634–1642

    Article  Google Scholar 

  • Nickel O, Klingauf F (1985) Biologie und Massenwechsel der tropischen Citrus-Blattlaus Toxoptera citricidus in Beziehung zur NĂĽtzlingsaktivität und Klima in Misiones Argentinien (Homoptera: Aphididae). Entomol Gener 10:231–240 (in German, English sum.)

    Google Scholar 

  • Ono S, Hirose K, Takahara T, Iwagaki I, Yoshinaga K (1988) Studies on physiological fruit drop in mid and late maturing citrus cultivars: 1. Inter-cultivar difference and relationship between physiological fruit drop and ecological factors. Bull Fruit Tree Res Stn D Kuchinotsu 10:47–68

    Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL et al. (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407

    Article  PubMed  CAS  Google Scholar 

  • Qureshi JA, Rogers ME, Hall DG, Stansly PA (2009) Incidence of invasive Diaphorina citri (Hemiptera: Psyllidae) and its introduced parasitoid Tamarixia radiate (Hymenoptera: Eulophidae) in Florida citrus. J Econ Entomol 102:247–256

    Article  PubMed  Google Scholar 

  • Qureshi JA, Stansly PA (2007) Integrated approaches for managing the Asian citrus psyllid Diaphorina citri (Homoptera: Psyllidae) in Florida. Proc Fla State Hort Soc 120:110–115

    Google Scholar 

  • Qureshi JA, Stansly PA (2008) Rate, placement, and timing of aldicarb applications to control Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae) in oranges. Pest Manage Sci 64:1159–1169

    Article  CAS  Google Scholar 

  • Qureshi JA, Stansly PA (2009) Exclusion techniques reveal significant biotic mortalitysuffered by Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae) populations in Florida citrus. Biol Control 50:129–136

    Article  Google Scholar 

  • Qureshi JA, Stansly PA (2010) Dormant season foliar sprays of broad-spectrum insecticides: an effective component of integrated management for Diaphorina citri (Hemiptera: Psyllidae) in citrus orchards. doi: 10.1016/j.cropro.2010.04.013

    Google Scholar 

  • Reuther W (1973) Climate and citrus behavior. In: Reuther W (ed) The citrus industry, vol III. University of California, Division of Agricultural Sciences, Berkeley, CA, pp 280–337

    Google Scholar 

  • Rocha-Pena MA, Lee RF, Lastra R, Niblett CL, Ochoa-Corona FM, Garnsey SM, Yokomi RK (1995) Citrus tristeza virus and its aphid vector, Toxoptera citricida. Threats to citrus production in the Caribbean and Central and North America. Plant Dis 79:437–445

    Article  Google Scholar 

  • Rosenzweig C, Phillips J, Goldberg R, Carrollh J, Hodges T (1996) Potential impacts of climate change on citrus and potato production in the US. Agric Syst 52:455–479

    Article  Google Scholar 

  • Seif AA, Islam AS (1988) Population densities and spatial distribution patterns of Toxoptera citricida (Kirk.) (Aphididae) in Citrus at Kenya coast. Insect Sci Appl 9:535–538

    Google Scholar 

  • Stilling P, Rossi am, Hungate B et al (1999) Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecol Appl 9:240–244

    Google Scholar 

  • Stone GN, Willmer PG (1989) Warm-up rates and body temperatures in bees: the importance of body size, thermal regime and phylogeny. J Exp Biol 147:303–328

    Google Scholar 

  • Storey JM, Storey KB (1986) Winter survival of gall fly larva, Eurosta solidaginis: profiles of fuel reserves and cryoprotectants in a natural population. J Insect Physiol 32:549–556

    Article  CAS  Google Scholar 

  • Takanashi M (1989) The reproductive ability of apterous and alate viviparous morphs of the citrus brown aphid, Toxoptera citricidus (Kirkaldy) (Homoptera: Aphididae). Jpn J Appl Entomol Zool 33:266–269 (in Japanese, English summary)

    Article  Google Scholar 

  • Tang YQ, Lapointe SL, Brown LG, Hunter WB (1999) Effects of host plant and temperature on the biology of Toxoptera citricida (Homoptera: Aphididae). Environ Entomol 28:895–900

    Google Scholar 

  • Tao CC, Tan MF (1961) Identification, seasonal population and chemical control of citrus aphids of Taiwan. J Agric Res 10:41–52

    CAS  Google Scholar 

  • Tsai JH, Lee RF (1999) Biology and control of brown citrus aphid (Toxoptera citricida Kirkaldy) and citrus tristeza. Radcliffs IPM world text book. University of Minnesota, MN, USA

    Google Scholar 

  • Tsai JH, Liu YH, Wang JJ, Lee RF (2000) Recovery of orange stem pitting strains of citrus tristeza virus (CTV) following single aphid transmission with Toxoptera citricida from a Florida decline isolate of CTV. Proc Fla State Hort Soc 113:75–78

    Google Scholar 

  • Tsai JH, Wang KH (1999) Life table study of brown citrus aphid (Homoptera: Aphididae) at different temperatures. Environ Entomol 28:412–419

    Google Scholar 

  • Turrell FM (1972) The science and technology of frost protection. In: Reuthcr W (ed) The citrus industry, vol. 3. University of Galifornia Press, Berkeley, CA, pp 338–446

    Google Scholar 

  • Weathersbee AA III, Mckenzie CL, Tang YQ (2004) Host plant and temperature effects on Lysiphlebus testaceipes (Hymenoptera: Aphidiidae), a native parasitoid of the exotic brown citrus aphid (Homoptera: Aphididae). Ann Entomol Soc Am 97:476–480

    Article  Google Scholar 

  • Wiltbank WJ, Oswalt TW (1987) Low temperature killing points of citrus leaves during the 1984–85, 1985–86 and 1986–87 low temperature periods in Florida. Proc Fla State Hort Soc 100:113–115

    Google Scholar 

  • Winterling G (1984) Freeze of 83 … and the effects: a major shift in Florida’s citrus belt. Weatherwise 37:305–306

    Article  Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Yin J, Schlesinger ME, Stouffer RJ (2009) Model projections of rapid sea-level rise on the northeast coast of the United States. Nat Geosci 2:262–266

    Article  CAS  Google Scholar 

  • Yocum GD, Joplin KH, Denlinger DL (1991) Expression of heat shock proteins in response to high and low temperatures extremes in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 18:239–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. J.P. Michaud for helpful review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawwad A. Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Qureshi, J.A. (2010). Implications of Climate Change for Toxoptera citricida (Kirkaldy), a Disease Vector of Citrus in Florida. In: Kindlmann, P., Dixon, A., Michaud, J. (eds) Aphid Biodiversity under Environmental Change. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8601-3_6

Download citation

Publish with us

Policies and ethics