Skip to main content

Aphids in a Changing World

  • Chapter
  • First Online:
Aphid Biodiversity under Environmental Change

Abstract

When in 1824 the French mathematician Jean Baptiste Joseph Fourier suggested that the Earth’s temperature was slowly increasing it was not readily accepted. Some years later Svante Arrhenius (1896) and Guy Callendar (1938) supported this hypothesis and added that the planet’s temperature is increasing due to man’s activities, in particular the production of CO2, which has a crucial role in this matter. Several authors question how global warming is going to affect the planet and life forms. This question is addressed here, in particular how it is likely to influence aphids. Will they move to different locations, adapt to the change in conditions in their current habitat or go extinct? An analysis of the literature on the reactions to the sort of changes aphids will be exposed to in global change scenarios revealed that the results are contradictory, indicating positive, negative or no effect. The consensus is that it is extremely difficult to do experiments that simulate future conditions, especially when more than one parameter is considered. Nevertheless, the paleontological data provide a good record of how insects have responded to previous climatic changes. The evidence indicates that aphids are most likely to move to different geographical locations in order to track more suitable conditions, which may be more difficult than in the past because of habitat fragmentation and habitat loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Awmack CM, Harrington R (2000) Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agric For Entomol 2:57–61

    Article  Google Scholar 

  • Awmack CS, Harrington R, Leather SR (1997) Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera: Aphididae) at ambient and elevated CO2. Glob Chang Biol 3:545–549

    Article  Google Scholar 

  • Awmack CS, Harrington R, Leather SR, Lawton JH (1996) The impacts of elevated CO2 on aphid-plant interactions. Asp Appl Biol 45:317–322

    Google Scholar 

  • Awmack CS, Harrington R, Lindroth RL (2004) Aphid individual performance may not predict population responses to elevated CO2 or O3. Glob Chang Biol 10:1414–1423

    Article  Google Scholar 

  • Bezemer TM, Knight KJ, Newington JE, Jones TH (1999) How general are aphid responses to elevated atmospheric CO2? Ann Entomol Soc Am 92:724–730

    Google Scholar 

  • Blackman RL, Eastop VF (1984) Aphids on the world’s crops: an identification guide. John Wiley and Sons, Chichester, UK

    Google Scholar 

  • Blackman RL, Eastop VF (1994) Aphids on the world’s trees: an identification and information guide. CAB International, Wallingford

    Google Scholar 

  • Comes HP, Kadereit JW (1999) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438

    Article  Google Scholar 

  • Coope GR (1995) Insect faunas in ice age environments: why so little extinction? In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford, pp 55–74

    Google Scholar 

  • Cooper SJ, Ibrahim KM, Hewitt GM (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol 4:49–60

    Article  PubMed  CAS  Google Scholar 

  • Crawley MJ (1983) Herbivory, the dynamics of animal-plant interaction. University of California Press, Berkeley

    Google Scholar 

  • Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. In: Peters RL, Lovejoy TE (eds) Global warming and biological diversity. Yale University Press, New Haven, Connecticut, pp 297–308

    Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Chapman & Hall, Glasgow

    Book  Google Scholar 

  • Dixon AFG (1998) Aphid ecology: an optimization approach. Chapman and Hall, London

    Google Scholar 

  • Docherty M, Wade FA, Hurst DK, Whittaker JB, Lea PJ (1997) Responses of tree sap-feeding herbivores to elevated CO2. Glob Chang Biol 3:51–59

    Article  Google Scholar 

  • Drinnan IN (2005) The search for fragmentation thresholds in a Southern Sydney suburb. Ecol Model 124:339–349

    Google Scholar 

  • Díaz S, Fraser LH, Grime JP, Falczuk V (1998) The impact of elevated CO2 on plant-herbivore interactions: experimental evidence of moderating effects at the community level. Oecologia 117:177–186

    Article  Google Scholar 

  • Easterbrook DJ (1999) Surface processes and landforms. Prentice Hall, New Jersey

    Google Scholar 

  • Eddy JA, Oeschger H (1993) Global changes in the perspective of the past. John Wiley & Sons, New York

    Google Scholar 

  • Elias SA (1994) Quaternary insects and their environments. Smithsonian Institution Press, Washington

    Google Scholar 

  • Fahnestock JT, Povirk KL, Welker JM (2000) Ecological significance of litter redistribution by wind and snow in arctic landscapes. Ecography 23:623–631

    Article  Google Scholar 

  • Flynn DFB, Sudderth EA, Bazzaz FA (2006) Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environ Exp Bot 56:10–18

    Article  CAS  Google Scholar 

  • Frenzel B, Pécsi M, Velichko AA (1992) Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. Late Pleistocene-Holocene. Gustav Fischer, Stuttgart

    Google Scholar 

  • Hadly EA (1997) Evolutionary and ecological response of pocket gopher (Thomomys talpoides) to Late-Holocene climatic change. Biol J Linn Soc 60:277–296

    Article  Google Scholar 

  • Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG, Smith DG (1990) A geologic time scale 1989. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Heie OE (1967) Studies on fossil aphids (Homoptera: Aphidoidea), especially in the Copenhagen collection of fossils in Baltic amber. Spolia Zoologica Musei Hauniensis 26:1–274

    Google Scholar 

  • Heie OE (1987) Morphological structures and adaptation. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control. Elsevier, Amsterdam, pp 393–400

    Google Scholar 

  • Heie OE (1996) The evolutionary history of aphids and a hypothesis on the coevolution of aphids and plants. Bollettino di Zoologia Agraria e di Bachicoltura 28:149–155

    Google Scholar 

  • Heie OE, Peñalver E (1999) Palaeophylloxera nov. gen., the first fossil specimen of the family Phylloxeridae (Hemiptera: Phylloxeroidea); Lower Miocene of Spain. Geobios 32:593–597

    Article  Google Scholar 

  • Heie OE, Pike EM (1992) New aphids in Cretaceous amber from Alberta (Insecta, Homoptera). Can Entomol 124:1027–1053

    Article  Google Scholar 

  • Heie OE, Pike EM (1996) Reassessment of the taxonomic position of the fossil aphid family Canadaphididae based on two additional specimens of Canadaphis carpenteri (Hemiptera, Aphidinea). Eur J Entomol 93:617–622

    Google Scholar 

  • Heie OE, Wegierek P (1998) A list of fossil aphids (Homoptera, Aphidinea). Ann Upper Silesian Museum (Entomol) 8–9:159–192

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Himanen SJ, Nissinen A, Dong W-X, Nerg A-M, Stewart CN Jr, Poppy GM, Holopainen JK (2008) Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Glob Chang Biol 14:1–18

    Article  Google Scholar 

  • Holopainen JK (2002) Aphid response to elevated ozone and CO2. Entomol Exp Appl 104: 137–142

    Article  CAS  Google Scholar 

  • Holopainen JK, Kainulainen P, Oksanen J (1997) Growth and reproduction of aphids and levels of free amino acids in Scots pine and Norway spruce in an open-air fumigation with ozone. Glob Chang Biol 3:139–147

    Article  Google Scholar 

  • Holopainen JK, Kössi S (1998) Variable growth and reproduction response of the spruce shoot aphid, Cinara pilicornis, to increasing ozone concentrations. Entomol Exp Appl 87:109–113

    Article  CAS  Google Scholar 

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes L, Bazzaz FA (2001) Effects of elevated CO2 on five plant-aphid interactions. Entomol Exp Appl 99:87–96

    Article  Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps of Europe: 0–13,000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2001) Summary for policymakers. Report of working group I of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change. http://www.ipcc.ch/pub/spm22-01.pdf

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Article  Google Scholar 

  • Körner C (2003) Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. R Soc Lond Trans A 361:2023–2041

    Article  Google Scholar 

  • Ma C-S, Hau B, Poehling H-M (2004) Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomol Exp Appl 110: 65–71

    Article  Google Scholar 

  • Martin TE (1998) Are microhabitat preferences of coexisting species under selection and adaptive? Ecology 79:656–670

    Article  Google Scholar 

  • Mondor EB, Tremblay MN, Awmack CS, Lindroth RL (2005) Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres. Glob Chang Biol 11:1990–1996

    Google Scholar 

  • Moran NA (1994) Adaptation and constraint in the complex life cycles of animals. Ann Rev Ecol Evol Syst 25:573–600

    Article  Google Scholar 

  • Newman JA, Gibson DJ, Hickam E, Lorenz M, Adams E, Bybee L, Thompson R (1999) Elevated carbon dioxide results in smaller populations of the bird cherry-oat aphid Rhopalosiphum padi. Ecol Entomol 24:486–489

    Article  Google Scholar 

  • Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Holopainen JK (2006) Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics. Glob Chang Biol 12:1670–1679

    Article  Google Scholar 

  • Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Sebrands JGI, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407

    Article  PubMed  CAS  Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, San Diego

    Google Scholar 

  • Pons X, Comas J, Albajes R (1993) Overwintering of cereal aphids (Homoptera: aphididae) on durum wheat in a Mediterranean climate. Environ Entomol 22:381–387

    Google Scholar 

  • Pons X, Tatchell GM (1995) Drought stress and cereal aphid performance. Ann Appl Biol 126: 19–31

    Article  Google Scholar 

  • Prather M, Ehhalt D (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 239–287

    Google Scholar 

  • Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK, pp 183–237

    Google Scholar 

  • Root TL (1988) Environmental factors associated with avian distributional limits. J Biogeogr 15:489–505

    Article  Google Scholar 

  • Rubenstein DI (1992) Global warming and biological diversity. Yale University Press, New Haven

    Google Scholar 

  • Salt DT, Fenwick P, Whittaker JB (1996) Interspecific herbivore interactions in a high-CO2 environment: root and shoot aphids feeding on Cardamine. Oikos 77:326–330

    Article  Google Scholar 

  • Schowalter TD (2000) Insect ecology: an ecosystem approach. Academic Press, San Diego, California

    Google Scholar 

  • Shaposhnikov GC (1987) Evolution of aphids in relation to evolution of plants. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control. Elsevier, Amsterdam, pp 409–414

    Google Scholar 

  • Singer MC, Thomas CD (1996) Evolutionary responses of a butterfly metapopulation to human- and climate-caused environmental variation. Am Nat 148:S9–S39

    Article  Google Scholar 

  • Smith H (1996) The effects of elevated CO2 on aphids. Antenna 20:109–111

    Google Scholar 

  • Stacey DA, Fellowes MDE (2002) Influence of elevated CO2 on interspecific interactions at higher trophic levels. Glob Chang Biol 8:668–678

    Article  Google Scholar 

  • Sudderth EA, Stinson KA, Bazzaz FA (2005) Host-specific aphid population responses to elevated CO2 and increased N availability. Glob Chang Biol 11:1997–2008

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Theurillat P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change 50:77–109

    Article  CAS  Google Scholar 

  • Von Dohlen CD, Moran NA (2000) Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biol J Linn Soc 71:689–717

    Article  Google Scholar 

  • Whittaker JB (1999) Impacts and responses at population level of herbivorous insects to elevated CO2. Eur J Entomol 96:149–156

    Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48:607–615

    Article  Google Scholar 

  • Williams RS, Lincoln DE, Norby RJ (2003) Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137:114–122

    Article  PubMed  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhou X, Harrington R, Woiwod IP, Perry JN, Bale JS, Clark SJ (1995) Effects of temperature on aphid phenology. Glob Chang Biol 1:303–313

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank to António Pombinho for his support and critical reading of the early versions of this manuscript. The paper also greatly benefited from discussions with Professor Tony Dixon. The work was supported by the grant No. LC 06073 of the MSMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga M.C.C. Ameixa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ameixa, O.M. (2010). Aphids in a Changing World. In: Kindlmann, P., Dixon, A., Michaud, J. (eds) Aphid Biodiversity under Environmental Change. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8601-3_2

Download citation

Publish with us

Policies and ethics