Skip to main content

Modelling Population Dynamics of Aphids and Their Natural Enemies

  • Chapter
  • First Online:
Aphid Biodiversity under Environmental Change

Abstract

Aphids are serious pests of many agricultural crops. Therefore, a good understanding of their population dynamics is vitally important for crop protection. There have been several attempts made to forecast the abundance of aphids and develop expert systems to help farmers optimize prophylactic measures and minimize their costs. The advisory systems, however, did not receive general acceptance and disappointingly few forecasting systems are in use. The failure of models to predict aphid population dynamics for practical purposes is due to the extremely wild oscillations in aphid numbers caused by intrinsic (size, fecundity, mortality, migration rate) and external factors (weather, especially temperature). As a consequence, the predictions are unlikely to be robust enough for reliable forecasting, mainly because they depend on the course of weather during the season, which cannot be predicted. Here we present a critical review of existing models of aphid population dynamics, examine biological assumptions that are incorporated in the models and present one of the latest models of aphid metapopulation dynamics. We conclude that natural enemies are unlikely to affect aphid population dynamics late in the season, but may have an effect very early in the season, when aphid colonies are still small and predators might be able to reduce the numbers of these colonies. Empirical verification of this is still very weak, however, and further experiments on this aspect of predator prey dynamics should be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwala BK, Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol Entomol 17:303–309

    Article  Google Scholar 

  • Agarwala BK, Dixon AFG (1993) Kin recognition: egg and larval cannibalism in Adalia bipunctata (Coleoptera: Coccinellidae). Eur J Entomol 90:45–50

    Google Scholar 

  • Ayal Y, Green RF (1993) Optimal egg distribution among host patches for parasitoids subject to attack by hyperparasitoids. Am Nat 141:120–138

    Article  PubMed  CAS  Google Scholar 

  • Barlow ND, Dixon AFG (1980) Simulation of lime aphid population dynamics. Pudoc, Wageningen

    Google Scholar 

  • Basky Z (2003) Predators and parasitoids on different cereal aphid species under caged and no caged conditions in Hungary. In: Soares AO, Ventura MA, Garcia V, Hemptinne J-L (eds) Proceedings of the 8th international symposium on ecology of aphidophaga: biology, ecology and behaviour of aphidophagous insects. Arquipélago – Life and Marine Science, Supplement 5, Ponta Delgada, Azores, Portugal

    Google Scholar 

  • Berryman AA, Kindlmann P (2008) Population systems: a general introduction. Springer, Dordrecht

    Google Scholar 

  • Bilde T, Toft S (1999) Prey consumption and fecundity of the carabid beetle Calathus melanocephalus on diets of three cereal aphids: high consumption rates of low quality prey. Pedobiologia 43:422–429

    Google Scholar 

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystems. Ecol Lett 6:857–865

    Article  Google Scholar 

  • Carter N (1985) Simulation modelling of the population dynamics of cereal aphids. Biosystems 1:111–119

    Article  Google Scholar 

  • Carter N, Dixon AFG (1981) The “natural enemy ravine” in cereal aphid population dynamics. J Anim Ecol 50:605–611

    Article  Google Scholar 

  • Carter N, Dixon AFG, Rabbinge R (1982) Cereal aphid populations: biology, simulation and predation. Centre for Agricultural Publishing, Wageningen

    Google Scholar 

  • Chambers RJ, Sunderland KD, Wyatt IJ, Vickerman GP (1983) The effects of predator exclusion and caging on cereal aphids in winter wheat. J Appl Ecol 20:209–224

    Article  Google Scholar 

  • Chambers RJ, Wellings PW, Dixon AFG (1985) Sycamore aphid numbers and population density 11. Some processes. J Anim Ecol 54:425–442

    Article  Google Scholar 

  • Costamagna AC, Landis DA (2007) Quantifying predation on soybean aphid through direct field observations. Biol Control 42:16–24

    Article  Google Scholar 

  • DeLoach CJ (1974) Rate of increase of populations of cabbage, green peach, and turnip aphids at constant temperatures. Ann Entomol Soc Am 67:332–340

    Google Scholar 

  • Dedryver CA, Fiévet V, Plantegnest M, ad Vialatte A (2009) An overview of Sitobion avenae population functioning at three spatial scales in France. Redia 42:159–162

    Google Scholar 

  • Dixon AFG (1963) Reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr.) (Hemiptera. Aphididae). J Anim Ecol 32:33–48

    Article  Google Scholar 

  • Dixon AFG (1966) The effect of population density and nutritive status of the host on the summer reproductive activity of the sycamore aphid, Drepanosiphum platanoides (Schr.). J Anim Ecol 35:105–112

    Article  Google Scholar 

  • Dixon AFG (1969) Population dynamics of the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae): Migratory and trivial flight activity. J Anim Ecol 38:585–606

    Article  Google Scholar 

  • Dixon AFG (1970) Stabilisation of aphid populations by an aphid induced plant factor. Nature (London) 227:1368–1369

    Article  Google Scholar 

  • Dixon AFG (1971) The role of intra-specific mechanisms and predation in regulating the numbers of the lime aphid, Eucallipterus tiliae L. Oecologia 8:179–193

    Article  Google Scholar 

  • Dixon AFG (1975) Effect of population density and food quality on autumnal reproductive activity in the sycamore aphid, Drepanosiphum platanoides (Schr). J Anim Ecol 44:297–304

    Article  Google Scholar 

  • Dixon AFG (1979) Sycamore aphid numbers: the role of weather, host and aphid. In: Anderson RM, BD Turner, LR Taylor (eds) Population dynamics. Blackwell, Oxford, pp 105–121

    Google Scholar 

  • Dixon AFG (1990) Population dynamics and abundance of deciduous tree-dwelling aphids. In: Hunter M, N Kidd, SR Leather, AD Watt (eds) Population dynamics of forest insects. Intercept, Andover, pp 11–23

    Google Scholar 

  • Dixon AFG (1992) Constraints on the rate of parthenogenetic reproduction and pest status of aphids. Invertebr Reprod Dev 22:159–163

    Article  Google Scholar 

  • Dixon AFG (1998) Aphid ecology: an optimization approach, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Dixon AFG (2005) Insect herbivore-host dynamics: shrub-dwelling aphids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dixon AFG, Barlow ND (1979) Population regulation in the lime aphid. Zool J Linn Soc 67:225–237

    Article  Google Scholar 

  • Dixon AFG, Hemptinne J-L, Kindlmann P (1995) The ladybird fantasy – prospects and limits to their use in the biological control of aphids. Züchtungsforschung 1:395–397

    Google Scholar 

  • Dixon AFG, Horth S, Kindlmann P (1993a) Migration in insects: costs and strategies. J Anim Ecol 62:182–190

    Article  Google Scholar 

  • Dixon AFG, Kindlmann P (1998) Population dynamics of aphids. In: Dempster PJ, IFG McLean (eds) Insect populations. Kluwer, Dordrecht, pp 207–230

    Chapter  Google Scholar 

  • Dixon AFG, Kindlmann P, Sequeira R (1996) Population regulation in aphids. In: Floyd RB, AW Sheppard, PJ De Barro (eds) Frontiers of population ecology. CSIRO Publishing, Melbourne, pp 103–114

    Google Scholar 

  • Dixon AFG, Mercer DR (1983) Flight behaviour in the sycamore aphid: factors affecting take-off. Entomol Exp Appl 33:43–49

    Article  Google Scholar 

  • Dixon AFG, Russel RJ (1972) The effectiveness of Anthocoris nemorum and A. confusus (Hemiptera: Anthocoridae) as predators of the sycamore aphid, Drepanosiphum platanoides II. Searching behaviour and the incidence of predation in the field. Entomol Exp Appl 15:35–50

    Article  Google Scholar 

  • Dixon AFG, Wellings PW, Carter C, Nichols JFA (1993b) The role of food quality and competition in shaping the seasonal cycle in the reproductive activity of the sycamore aphid. Oecologia 95:89–92

    Google Scholar 

  • Elliott NC, Kieckhefer RW (1990) Dynamics of aphidophagous coccinellid assemblages in small grain fields in eastern South Dakota. Environ Entomol 19:1320–1329

    Google Scholar 

  • Elliott NC, Kieckhefer RW (2000) Response by coccinellids to spatial variation in cereal aphid density. Popul Ecol 42:81–90

    Article  Google Scholar 

  • van Emden HF (1965) The effect of uncultivated land on the distribution of cabbage aphid (Brevicorine brassicae) on an adjacent crop. J Appl Ecol 2:171–196

    Article  Google Scholar 

  • Frazer BD, Gilbert N (1976) Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J Entomol Soc B C 73:33–56

    Google Scholar 

  • Frazer BD, Gilbert N, Ives PM, Raworth DA (1981) Predator reproduction and the overall predator-prey relationship. Can Entomol 113:1015–1024

    Article  Google Scholar 

  • Galecka B (1966) The role of predators in the reduction of two species of potato aphids, Aphis nasturtii Kalt. and A. frangulae Kalt. Ekologia Polska 14:245–274

    Google Scholar 

  • Galecka B (1977) Effect of aphid feeding on the water uptake by plants and on their biomass. Ekologia Polska 25:531–537

    Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, Difonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Appl 19:143–154

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Hughes RD (1971) A model of an aphid population – three adventures. J Anim Ecol 40:525–534

    Article  Google Scholar 

  • Gonzalez-Andujara JL, Garcia-de Cecab JL, Fereresc A (1993) Cereal aphids expert system (CAES): identification and decision making. Comput Electron Agric 8:293–300

    Article  Google Scholar 

  • Gosselke U, Triltsch H, Roßberg D, Freier B (2001) GETLAUS01 – the latest version of a model for simulating aphid population dynamics in dependence on antagonists in wheat. Ecol Model 145:143–157

    Article  Google Scholar 

  • Gutierrez AP, Baumgaertner JU (1984a) Multitrophic level models of predator-prey energetics I. Age specific energetics models – pea aphid Acyrthosiphum pisum (Harris) (Homoptera: Aphididae) as an example. Can Entomol 116:924–932

    Google Scholar 

  • Gutierrez AP, Baumgaertner JU (1984b) Multitrophic level models of predator-prey energetics II. A realistic model of plant-hrebivore-parasitoid-predator interactions. Can Entomol 116:933–949

    Article  Google Scholar 

  • Gutierrez AP, Baumgaertner JU, Summers GC (1984) Multitrophic level models of predator-prey energetics III. A case study of an alfalfa system. Can Entomol 116:950–963

    Article  Google Scholar 

  • Gutierrez AP, Baumgärtner JU, Hagen KS (1981) A conceptual-model for growth, development, and reproduction in the ladybird beetle, Hippodamia convergens (Coleoptera, Coccinellidae). Can Entomol 113:21–33

    Article  Google Scholar 

  • Gutierrez AP, Havenstein DE, Nix HA, Moore PA (1974) Ecology of Aphis craccivora Koch and subterranean clover stunt virus in southeast Australia. 2. Model of cowpea aphid populations in temperate pastures. J Appl Ecol 11:1–20

    Article  Google Scholar 

  • Gutierrez AP, Summers CG, Baumgaertner J (1980) The phenology and distribution of aphids in California alfalfa as modified by ladybird beetle predation (Coleoptera, Coccinellidae). Can Entomol 112:489–495

    Article  Google Scholar 

  • Hamilton PA (1973) The biology of Aphelinus flavus (Hym. Aphelinidae), a parasite of the sycamore aphid Drepanosiphum platanoidis (Hemipt. Aphididae). Entomophaga 18:449–462

    Article  Google Scholar 

  • Hamilton PA (1974) The biology of Monoctonus pseudoplatani, Trioxys cirsii and Dyscritulus planiceps, with notes on their effectiveness as parasites of the sycamore aphid, Drepanosiphum platanoidis. Ann Soc Entomol Fr 10:821–840

    Google Scholar 

  • Hand LF, Keaster AJ (1967) The environment of an insect field cage. J Econ Entomol 60:910–915

    Google Scholar 

  • Harrington R, Hullé M, Plantegenest M (2007) Monitoring and forecasting. In: van Emden HF, R Harrington (eds) Aphids as crop pests. CABI International, London, pp 515–536

    Chapter  Google Scholar 

  • Hemptinne J-L, Dixon AFG, Coffin J (1992) Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia 90:238–245

    Google Scholar 

  • Hemptinne J-L, Dixon AFG, Doucet JL, Petersen JE (1993) Optimal foraging by hoverflies (Diptera: Syrphidae) and ladybirds (Coleoptera: Coccinellidae): mechanisms. Eur J Entomol 90:451–455

    Google Scholar 

  • Hemptinne J-L, Lognay G, Doumbia M, Dixon AFG (2001) Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11:43–47

    Article  CAS  Google Scholar 

  • Hironori Y, Katsuhiro S (1997) Cannibalism and interspecific predation in two predatory ladybird beetles in relation to prey abundance in the field. Entomophaga 42:153–163

    Article  Google Scholar 

  • Holland JM, Thomas SR, Hewitt A (1996) Some effects of polyphagous predators on an outbreak of cereal aphid (Sitobion avenae F.) and orange wheat blossom midge (Sitodoplosis mosellana Gehin). Agric Ecosyst Environ 59:181–190

    Article  Google Scholar 

  • Holler C, Borgemeister C, Haardt H, Powell W (1993) The relationship between primary parasitoids and hyperparasitoids of cereal aphids: an analysis of field data. J Anim Ecol 62:12–21

    Article  Google Scholar 

  • Honěk A, Jarošík V (2000) The role of crop density, seed and aphid presence in diversification of field communities of Carabidae (Coleoptera). Eur J Entomol 97:517–525

    Google Scholar 

  • Honěk A, Martinková Z (2005) Long term changes in abundance of Coccinella septempunctata (Coleoptera: Coccinellidae) in the Czech Republic. Eur J Entomol 102:443–448

    Google Scholar 

  • Honěk A, Martinková J, Jarošík V (2003) Carabids as seed predators. Eur J Entomol 100:531–544

    Google Scholar 

  • Houdková K, Kindlmann P (2006) Scaling up population dynamic processes in a ladybird-aphid system. Popul Ecol 48:323–332

    Article  Google Scholar 

  • Houdková K, Kindlmann P (2010) Modelling of aphid-coccinellid interactions on a long-term scale. Submitted

    Google Scholar 

  • Hughes RD (1963) Population dynamics of the cabbage aphid, Brevicoryne brassicae (L). J Anim Ecol 32:393–424

    Article  Google Scholar 

  • Hughes RD, Gilbert N (1968) A model of an aphid population. J Anim Ecol 37:553–563

    Article  Google Scholar 

  • Huxley TH (1858) On the agamic reproduction and morphology of Aphis – Part 1. Trans Linn Soc 22:193–219

    Article  Google Scholar 

  • Jarošík V, Dixon AFG (1999) Population dynamics of a tree-dwelling aphid: regulation and density independent processes. J Anim Ecol 68:726–732

    Article  Google Scholar 

  • Jarošík V, Honěk A, Dixon AFG (2003) Natural enemy ravine revisited: the importance of sample size for determining population growth. Ecol Entomol 28:85–91

    Article  Google Scholar 

  • Kareiva P (1990) Population dynamics in spatially complex environments: theory and data. Philos Trans R Soc Lond B 330:175–190

    Article  Google Scholar 

  • Kieckhefer RW, Elliott NC (1990) A 13-year survey of the aphidophagous Coccinellidae in maize fields in eastern South Dakota. Can Entomol 122:579–581

    Article  Google Scholar 

  • Kindlmann (2010) Some cage exclusion experiments do not accurately measure the effectiveness of predators in reducing the abundance of their prey. Submitted

    Google Scholar 

  • Kindlmann P, Dixon AFG (1989) Developmental constraints in the evolution of reproductive strategies: telescoping of generations in parthenogenetic aphids. Funct Ecol 3:531–537

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG (1992) Optimum body size: effects of food quality and temperature, when reproductive growth rate is restricted. J Evol Biol 5:677–690

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG (1993) Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. Eur J Entomol 90:443–450

    Google Scholar 

  • Kindlmann P, Dixon AFG (1996) Population dynamics of a tree-dwelling aphid: individuals to populations. Ecol Model 89:23–30

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG (1997) Patterns in the population dynamics of the Turkey-oak aphid. In: Nieto Nafria JM, AFG Dixon (eds) Aphids in natural and managed ecosystems. Universidad de León, León, pp 219–225

    Google Scholar 

  • Kindlmann P, Dixon AFG (1999) Generation time ratios – determinants of prey abundance in insect predator-prey interactions. Biol Control 16:133–138

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG (2001) When and why top-down regulation fails in arthropod predator-prey systems. Basic Appl Ecol 2:333–340

    Article  Google Scholar 

  • Kindlmann P, Dixon AFG, Gross LJ (1992) The relationship between individual and population growth rates in multicellular organisms. J Theor Biol 157:535–542

    Article  Google Scholar 

  • Kindlmann P, Arditi R, Dixon AFG (2004) A simple aphid population model. In: Simon J-C, Dedryver C-A, Rispe C, Hulle M (eds) Aphids in a new millenium. INRA Editions, INRA, Paris, pp 325–330

    Google Scholar 

  • Kindlmann P, Yasuda H, Kajita Y, Dixon AFG (2005) Field test of the effectiveness of ladybirds in controlling aphids. In: Hoddle MS (ed) International symposium on biological control of arthropods, September 12–16, 2005. USDA Forest Service, FHTET–2005–08, Davos, Switzerland, pp 441–447

    Google Scholar 

  • Knudsen GR, Schotzko DJ (1991) Simulation of Russian wheat aphid movement and population-dynamics on preferred and nonpreferred host plants. Ecol Model 57:117–131

    Article  Google Scholar 

  • Luck RF, Shepard BM, Kenmore PE (1988) Experimental methods for evaluating arthropod natural enemies. Ann Rev Entomol 33:367–391

    Article  Google Scholar 

  • Mack TP, Smilowitz Z (1981) The vertical distribution of green peach aphids and its effect on a model quantifying the relationship between green peach aphids and a predator. Am Potato J 58:345–353

    Article  Google Scholar 

  • Mack TP, Smilowitz Z (1982) Using temperature-mediated functional response models to predict the impact of Coleomegilla maculata (DeGeer) adults and 3rd-instar larvae on green peach aphids. Environ Entomol 11:46–52

    Google Scholar 

  • Mackauer M, Völkl W (1993) Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact? Oecologia 94:339–350

    Article  Google Scholar 

  • Mackauer M, Way MJ (1976) Myzus persicae Sulz. an aphid of world importance. In: Delucchi VL (ed) Studies in biological control. Cambridge University Press, Cambridge, pp 51–119

    Google Scholar 

  • Mann BP, Wratten SD, Watt AD (1986) A computer-based advisory system for cereal aphid control. Comput Electron Agric 1:263–270

    Article  Google Scholar 

  • Michels GJ, Elliott NC, Romero RA, Owings DA, Bible JB (2001) Impact of indigenous coccinellids on Russian wheat aphids and greenbugs (Homoptera: Aphididae) infesting winter wheat in the Texas Panhandle. Southwest Entomol 26:97–114

    Google Scholar 

  • Mills NJ (1982) Voracity, cannibalism and coccinellid predation. Ann Appl Biol 101:144–148

    Google Scholar 

  • Mills NJ (2006) Accounting for differential success in the biological control of homopteran and lepidopteran pests. N Z J Ecol 30:61–72

    Google Scholar 

  • Mills NJ, Latham D (2009) Quantifying the role of predation in the seasonal dynamics of mealy plum aphid populations in California. Redia, 42:153–157

    Google Scholar 

  • Morgan D (2000) Population dynamics of the bird cherry-oat aphid, Rhopalosiphum padi (L.), during the autumn and winter: a modelling approach. Agric For Entomol 2:297–304

    Article  Google Scholar 

  • Osawa N (1993) Population field studies of the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): life tables and key factor analysis. Res Popul Ecol 35:335–348

    Article  Google Scholar 

  • de Réaumur RP (1737) Mémoires pour servir à l’histoire des insects, vol 111. Imprimerie Royale, Paris, pp 332–350

    Google Scholar 

  • Ro TH, Long GE (1998) Population dynamics pattern of green peach aphid (Homoptera: Aphididae) and its predator complex in a potato system. Korean J Biol Sci 2:217–222

    Article  Google Scholar 

  • Ro TH, Long GE (1999) GPA-Phenodynamics, a simulation model for the population dynamics and phenology of green peach aphid in potato: formulation, validation, and analysis. Ecol Model 119:197–209

    Article  Google Scholar 

  • Schmidt MH, Lauer A, Purtauf T, Thies C, Schaefer M, Tscharntke T (2003) Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc Lond B 270:1905–1909

    Article  Google Scholar 

  • Scopes NEA (1969) The potential of Chrysopa carnea as a biological control agent of Myzus persicae on glasshouse chrysanthemums. Ann Appl Biol 64:433–439

    Article  Google Scholar 

  • Sequeira R, Dixon AFG (1997) Patterns and processes in the population dynamics of tree-dwelling aphids: the importance of time scales. Ecology 78:2603–2610

    Google Scholar 

  • Skirvin DJ, Perry JN, Harrington R (1997a) A model describing the population dynamics of Sitobion avenae and Coccinella septempunctata. Ecol Model 96:29–39

    Article  Google Scholar 

  • Skirvin DJ, Perry JN, Harrington R (1997b) The effect of climate change on an aphid–coccinellid interaction. Glob Change Biol 3:1–11

    Article  Google Scholar 

  • Smilowitz Z (1984) GPA-CAST: a computerized model for green peach aphid management on potatoes. In: Lashomb JH, R Casagrande (eds) Advances in potato pest management. Hutchinson Ross, Pennsylvania, pp 193–203

    Google Scholar 

  • Smith RF, Hagen KS (1959) Impact of commercial insecticide treatments. Hilgardia 29:131–154

    CAS  Google Scholar 

  • Southwood TRE, Comins HN (1976) A synoptic population model. J Anim Ecol 45:949–965

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Stewart L, Dixon AFG (1988) Quantification of the effect of natural enemies on the abundance of aphids: precision and statistics. In: Niemczyk E and AFG Dixon (eds) Ecology and effectiveness of aphidophaga. Academic Publishing, The Hague, pp 187–197

    Google Scholar 

  • Tamaki G (1973) Spring populations of the green peach aphid on peach trees and the role of natural enemies in their control. Environ Entomol 2:186–191

    Google Scholar 

  • Tamaki G (1984) Biological control of potato pests. In: Lashomb JH, R Casagrande (eds) Advances in potato pest management. Hutchinson Ross, Pennsylvania, pp 178–192

    Google Scholar 

  • Tamaki G, Weeks RE (1972) Efficiency of three predators, Geocoris bullatus, Nabis americoferous, and Coccinella transversoguttata, used alone or in combination against three prey species, Myzus persicae, Ceramica picta, and Mamestra configurata, in a greenhouse study. Environ Entomol 1:258–263

    Google Scholar 

  • Tamaki G, Weeks RE (1973) The impact of predators on populations of green peach aphids on field-grown sugar beets. Environ Entomol 2:345–349

    Google Scholar 

  • Tamaki G, Weiss MA, Long GE (1980) Impact of high temperatures on the population dynamics of the green peach aphid in field cages. Environ Entomol 9:331–337

    Google Scholar 

  • Tamaki G, Weiss MA, Long GE (1982) Effective growth units in population dynamics of the green peach aphid (Homoptera: Aphididae). Environ Entomol 11:1134–1136

    Google Scholar 

  • Taylor LR (1977) Migration and the spatial dynamics of an aphid, Myzus persicae. J Anim Ecol 46:411–423

    Article  Google Scholar 

  • Turchin P (1990) Rarity of density dependence or population regulation with lags? Nature 344:660–663

    Article  Google Scholar 

  • Turchin P, Taylor AD (1992) Complex dynamics in ecological time series. Ecology 73:289–305

    Article  Google Scholar 

  • Watt AD (1983) The influence of forecasting on cereal aphid control strategies. Crop Prot 2:417–429

    Article  Google Scholar 

  • Watt AD, Vickerman GP, Wratten SD (1984) The effect of the grain aphid, Sitobion avenae (F.), on winter wheat in England: an analysis of the economics of control practice and forecasting systems. Crop Prot 3:209–222

    Article  Google Scholar 

  • Weisser WW (2000) Metapopulation dynamics in an aphid-parasitoid system. Entomol Exp Appl 97:83–92

    Article  Google Scholar 

  • Wellings PW, Chambers RJ, Dixon AFG, Aikman DP (1985) Sycamore aphid numbers and population density 1. Some patterns. J Anim Ecol 54:411–424

    Article  Google Scholar 

  • Whalon ME, Smilowitz Z (1979) Temperature-dependent model for predicting field populations of green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Can Entomol 111:1025–1032

    Article  Google Scholar 

  • Wiktelius S, Pettersson J (1985) Simulations of bird cherry–oat aphid population dynamics: a tool for developing strategies for breeding aphid-resistant plants. Agric Ecosyst Environ 14:159–170

    Article  Google Scholar 

  • Williams IS, Dixon AFG (2007) Life cycles and polymorphism. In: van Emden HF, R Harrington (eds) Aphids as crop pests. CABI International, London

    Google Scholar 

  • Winder L, Alexander CJ, Holland JM, Woolley C, Perry JN (2001) Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecol Lett 4:568–576

    Article  Google Scholar 

  • Woolhouse MEJ, Harmsen R (1991) Population dynamics of Aphis pomi: a transition matrix approach. Ecol Model 55:103–111

    Article  Google Scholar 

  • Wratten SD (1975) The nature of the effects of aphids Sitobion avenae and Metopolophium dirhodum on the growth of wheat. Ann Appl Biol 79:27–34

    Article  Google Scholar 

  • Yasuda H, Ohnuma N (1999) Effect of cannibalism and predation on the larval performance of two ladybirds. Entomol Exp Appl 93:63–67

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the grant No. LC 06073 of the MSMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kindlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kindlmann, P., Dixon, A.F. (2010). Modelling Population Dynamics of Aphids and Their Natural Enemies. In: Kindlmann, P., Dixon, A., Michaud, J. (eds) Aphid Biodiversity under Environmental Change. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8601-3_1

Download citation

Publish with us

Policies and ethics