Skip to main content

Objects, Words and Actions: Some Reasons Why Embodied Models are Badly Needed in Cognitive Psychology

  • Chapter
  • First Online:
Applications of Mathematics in Models, Artificial Neural Networks and Arts

Abstract

In the present chapter we report experiments on the relationships between visual objects and action and between words and actions. Results show that seeing an object activates motor information and that language is also grounded in perceptual and motor systems. They are discussed within the framework of embodied cognitive science. We argue that models able to reproduce the experiments should be embodied organisms, whose brain is simulated with neural networks and whose body is as similar as possible to humans’ body. We also claim that embodied models are badly needed in cognitive psychology, as they could help to solve some open issues. Finally, we discuss potential implications of the use of embodied models for embodied theories of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Barsalou, L. W. (1999). Perceptual Symbol Systems. Behav. Brain Sci. 22, 577–609.

    Google Scholar 

  • Beauchamp, M. S., Lee, K. E., Argall, B. D., and Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41, 809–23.

    Google Scholar 

  • Borghi, A. M., Bonfiglioli, C., Lugli, L., Ricciardelli, P., Rubichi, S., and Nicoletti, R. (2007). Are visual stimuli sufficient to evoke motor information? Studies with hand primes. Neurosci. Lett. 411, 17–21.

    Google Scholar 

  • Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., and Rizzolatti, G. (2005). Listening to action related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cogn. Brain Res. 24, 355–63.

    Article  Google Scholar 

  • Caligiore, D., Borghi, A. M., Parisi, D., and Baldassarre, G. (2009). Affordances and compatibility effects: A neural-network computational model. In J. Mayor, N. Ruh, and K. Plunkett (Eds.), Connectionist models of behaviour and cognition II: Proceedings of the 11th Neural Computation and Psychology Workshop (pp. 15–26). Singapore: WorldScientific.

    Google Scholar 

  • Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62.

    Article  Google Scholar 

  • Ellis, R. and Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. Br. J. Psychol. 91, 451–471.

    Article  Google Scholar 

  • Erlhagen, W. and Schöner, G. (2002). Dynamic field theory of motor preparation. Psychol. Rev. 109, 545–572.

    Article  Google Scholar 

  • Fodor J. (1975). The language of thought. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Fogassi, L. and Gallese, V. (2004). Action as a binding key to multisensory integration. In G. Calvert, C. Spence, and B. E. Stein (Eds.), Handbook of multisensory processes. Cambridge: MIT Press.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119, 593–609.

    Article  Google Scholar 

  • Gallese, V., and Goldman, A. (1998). Mirror neurons and the simulation theory of mind reading. Trends Cogn. Sci. 2, 493–501.

    Article  Google Scholar 

  • Gallese, V. and Lakoff, G. (2005). The brain’s concepts: The role of the sensorimotor system in conceptual knowledge. Cogn. Neuropsychol. 21, 455–479.

    Article  Google Scholar 

  • Jeannerod, M. (2007). Motor cognition. What actions tell to the self. Oxford: Oxford University Press.

    Google Scholar 

  • Landauer, T. K. and Dumais, S.T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240.

    Article  Google Scholar 

  • Martin, A., Wiggs, C. L, Ungerleider, L. G. and Haxby, G. V. (1996). Neural correlates of category specific knowledge. Nature 379, 649–652.

    Article  Google Scholar 

  • Martin, A. (2001). Functional neuroimaging of semantic memory. In R. Cabeza and A. Kingstone (Eds.), Handbook of functional neuroimaging of cognition (pp. 153–186). Cambridge: MIT Press.

    Google Scholar 

  • Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Curr. Opin. Neurobiol. 11, 194–201.

    Article  Google Scholar 

  • Miller, E. K. and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Ann. Rev. Neurosci. 24, 167–202.

    Article  Google Scholar 

  • Milner, A. D., and Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.

    Google Scholar 

  • Pouget, A. and Latham, P. E. (2003). Population codes. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (2nd ed.). Cambridge, MA: The MIT Press.

    Google Scholar 

  • PulvermĂĽller, F. (1999). Words in the brain’s language. Behav. Brain Sci. 22, 253–336.

    Article  Google Scholar 

  • PulvermĂĽller, F. (2003). The neuroscience of language: On brain circuits of words and serial order. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rizzolatti, G. and Arbib, M. A. (1998). Language within our grasp. Trends Neurosci. 21, 188–194.

    Article  Google Scholar 

  • Scorolli, C. and Borghi, A. (2007). Sentence comprehension and action: Effector specific modulation of the motor system. Brain res. 1130, 119–124.

    Article  Google Scholar 

  • Scorolli, C., Borghi, A. M., and Glenberg, A. M. (2009). Language-induced motor activity in bimanual object lifting. Exp. Brain Res. 193, 43–53.

    Google Scholar 

  • Simmons, W. K., Pecher, D., Hamann, S. B., Zeelenberg, R., and Barsalou, L. W. (2003). fMR evidence for modality-specific processing of conceptual knowledge on six modalities. Meeting of the Society for Cognitive Neuroscience, New York.

    Google Scholar 

  • Tucker, M. and Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Vis. Cogn. 8, 769–800.

    Article  Google Scholar 

  • Wermter, S., Weber, C., Elshaw, M., Panchev, C., Erwin, H., and PulvermĂĽller, F. (2004). Towards Multimodal Neural Robot Learning. Robot. Autonom. Syst. J. 47, 171–175.

    Article  Google Scholar 

  • Wermter, S., Weber, C., Elshaw, M., Gallese, V., and PulvermĂĽller, F. (2005). Grounding neural robot language in action. In S. Wermter, G. Palm, and M. Elshaw (Eds.), Biomim. Neur. Learn. for Intelligent Robots (pp. 162–181).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Borghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Borghi, A.M., Caligiore, D., Scorolli, C. (2010). Objects, Words and Actions: Some Reasons Why Embodied Models are Badly Needed in Cognitive Psychology. In: Capecchi, V., Buscema, M., Contucci, P., D'Amore, B. (eds) Applications of Mathematics in Models, Artificial Neural Networks and Arts. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8581-8_4

Download citation

Publish with us

Policies and ethics