Skip to main content

Unusual Developmental Pattern of Expression of Enzymes Involved in DNA Biosynthesis in Trichinella spiralis and Trichinella pseudospiralis

  • Conference paper
  • First Online:
Detection of Bacteria, Viruses, Parasites and Fungi

Abstract

All species in the genus Trichinella, between them T. spiralis and T. pseudospiralis, have been successful in colonizing striated sceletal muscle tissue and remain infective in this niche for months to years. Trichinella spiralis causes trichinellosis, a serious disease in man and other mammals. Mating of adult worms (developing from infective larvae, deriving from digested infected meat) occurs in a non membrane-bound portion of columnar epithelium of the host’s small intestine. The fertilized females enter the intestinal wall and release to the bloodstream the newborn larvae. Each of these penetrates host’s skeletal muscle cell and lives in its modified portion, the nurse cell, surrounded by a collagen capsule around which a circulatory rete develops. The nurse cell development, initiated by T. spiralis infection, is associated with a variety of changes, including cell cycle re-entry and induction of DNA synthesis, followed by the apparent G2/M arrest of the infected cell in the cell cycle. Similar changes appear to be caused by T. pseudospiralis infection, albeit the nurse cell complexes are not encapsulated by collageneous fibres and the larvae may move between muscle cells. Thymidylate (dTMP) is formed intracellularly either de novo, in a process of the C(5) methylation of 2′-deoxyuridylate (dUMP), catalyzed by the enzyme thymidylate synthase (TS), or as a product of thymidine salvage via phosphorylation, catalyzed by the enzyme thymidine kinase. The dUMP methylation reaction involves a concerted transfer and reduction of the one-carbon group of N5,10-methylenetetrahydrofolate, with concomitant production of thymidylate and dihydrofolate. The coenzyme tetrahydrofolate is regenerated via dihydrofolate reduction by the enzyme dihydrofolate reductase (DHFR). One of the sources of TS substrate, dUMP, is dUTP hydrolysis in a pyrophosphatase reaction catalyzed by the enzyme dUTPase. TS and dUTPase induction is known to be associated with cell proliferation. Thymidylate synthesis inhibition by drugs targeted at either TS or DHFR is taken advantage of in chemotherapy. TS, DHFR and dUTPase were found to be persistently expressed at a high and constant level, comparable to that found in regenerating rat liver, in crude extracts from adult worms of Trichinella spiralis, as well as from developmentally arrested muscle larvae of both Trichinella spiralis (isolated 1–24 months after infection) and Trichinella pseudospiralis (isolated 5.5–13 months after infection). The results obtained with Trichinella pseudospiralis muscle larvae isolated with the use of pepsin did not differ from those obtained when pepsin was not used. Moreover, T. spiralis muscle larvae (T. pseudospiralis larvae were not tested) contained also high level, comparable with that found in mouse leukemia L1210 cells, of DNA polymerase α, a key enzyme of the eukaryotic replication complex, its expression also known to be associated with cell proliferation. Immunofluorescent detection of TS protein was done with the use of monoclonal antibodies, developed by in vivo immunization of Balb/c mice with homogeneous recombinant rat hepatoma TS protein as an antigen. The specific anti-rat TS antibodies recognized also T. spiralis TS, as indicated by cross-reactivity on Western blot. Localization of the enzyme was based on analysis of pictures collected by confocal microscopy. Two types of T. spiralis muscle larvae preparations were studied: muscle larvae isolated from mouse muscles by a procedure destroying nurse cells and muscle larvae remaining in nurse cells, isolated as an intact nurse cell preparation. The results revealed reproducible TS localization patterns, reflected by strong fluorescence emitted by cells of both female and male gonad primordium, as well as from the regions around stichocyte nuclei. High expression in Trichnella muscle larva of thymidylate synthase, and certain other enzymes involved in DNA biosynthesis, was found also in Caenorhabditis dauer larva and appears to be connected with their cells being arrested in the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayusawa D, Shimizu K, Koyama H, Kaneda S, Takeishi K, Seno T (1986) Cell-cycle-directed regulation of thymidylate synthase messenger RNA in human diploid fibroblasts stimulated to proliferate. J Mol Biol 190:559–567

    Article  PubMed  CAS  Google Scholar 

  • Békési A, Zagyva I, Hunyadi-Gulyás E, Pongrácz V, Kovári J, Nagy ÁO, Erdei A, Medzihradszky KF, Vértessy BG (2004) Developmental regulation of dUTPase in Drosophila melanogaster. J Biol Chem 279:22362–22370

    Article  PubMed  Google Scholar 

  • Bürglin TR, Labos E, Blaxter ML (1998) Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol 28:395–411

    Article  PubMed  Google Scholar 

  • Björklund S, Skog S, Tribukait B, Thelander L (1990) S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry 29:5452–5458

    Article  PubMed  Google Scholar 

  • Blakley RL (1984) Dihydrofolate reductase. In: Blakley RL, Benkovic SJ (eds) Folates and Pterines, vol 1. Wiley, New York, pp 191–253

    Google Scholar 

  • Bollum FJ (1959) Mammalian enzymes of desoxyribonucleic acid synthesis. Ann N Y Acad Sci 81:792–793

    Article  PubMed  CAS  Google Scholar 

  • Boxem M, Srinivasan DG, van den Heuvel S (1999) The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development 126:2227–2239

    PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Cabaj W (1986) The response of NIH mice to Trichinella pseudospiralis. Acta Parasitol Pol 31:77–85

    Google Scholar 

  • Cam H, Dynlacht BD (2003) Emerging roles for E2F: G1/S transition and DNA replication. Cancer Cell 3:311–316

    Article  PubMed  CAS  Google Scholar 

  • Capo V, Silberstein D, Despommier DD (1986) Immunocytolocalization of two protection-inducing antigens of Trichinella spiralis during its enteral phase in immune and non-immune mice. J Parasitol 72:931–938

    Article  PubMed  CAS  Google Scholar 

  • Carpenter NJ (1973) Thymidylate synthetase in mutants of Drosophila melanogaster. Genetics 75:113–122

    PubMed  CAS  Google Scholar 

  • Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    Article  PubMed  CAS  Google Scholar 

  • Cieśla J, Weiner KXB, Weiner RS, Reston JT, Maley GF, Maley F (1995a) Isolation and expression of rat thymidylate synthase cDNA: phylogenetic comparison with human and mouse thymidylate synthases. Biochim Biophys Acta 1261:233–242

    Article  PubMed  Google Scholar 

  • Cieśla J, Gołos B, Dzik JM, Pawełczak K, Kempny M, Makowski M, Bretner M, Kulikowski T, Machnicka B, Rzeszotarska B, Rode W (1995b) Thymidylate synthases from Hymenolepis diminuta and regenerating rat liver: purification, properties, and inhibition by substrate and cofactor analogues. Biochim Biophys Acta 1249:127–136

    Article  PubMed  Google Scholar 

  • Dalley BK, Golomb M (1992) Gene expression in the Caenorhabditis elegans dauer larva: developmental regulation of Hsp90 and other genes. Dev Biol 151:80–90

    Article  PubMed  CAS  Google Scholar 

  • Dąbrowska M, Zieliński Z, Wranicz M, Michalski R, Pawełczak K, Rode W (1996) Trichinella spiralis thymidylate synthase: developmental pattern, isolation, molecular properties and inhibition by substrate and cofactor analogues. Biochem Biophys Res Commun 228:440–445

    Article  PubMed  Google Scholar 

  • Dąbrowska M, Jagielska E, Cieśla J, Płucienniczak A, Kwiatowski J, Wranicz M, Boireau P, Rode W (2004) Trichinella spiralis thymidylate synthase: cDNA cloning and sequencing, and developmental pattern of mRNA expression. Parasitology 128:209–221

    Article  PubMed  Google Scholar 

  • Dąbrowska M, Skoneczny M, Zieliński Z, Rode W (2008) Nurse cell of Trichinella spp. as a model of long-term cell cycle arrest. Cell Cycle 7:2167–2178

    Article  PubMed  Google Scholar 

  • DeGregori J, Kowalik T, Nevins JR (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 15:4215–4224

    PubMed  CAS  Google Scholar 

  • Despommier DD (1993) Trichinella spiralis and the concept of niche. J Parasitol 79:472–482

    Article  PubMed  CAS  Google Scholar 

  • Despommier DD (1998) How does Trichinella spiralis make itself at home? Parasitol Today 14:318–323

    Article  PubMed  CAS  Google Scholar 

  • Despommier DD, Müller M (1976) The stichosome and its secretion granules in the mature muscle larva of Trichinella spiralis. J Parasitol 62:775–785

    Article  PubMed  CAS  Google Scholar 

  • Despommier DD, Gold AM, Buck SW, Capo V, Silberstein D (1990) Trichinella spiralis secreted antigen of the infective L1 larva localizes to the cytoplasm and nucleoplasm of infected host cells. Exp Parasitol 71:27–38

    Article  PubMed  CAS  Google Scholar 

  • Encalada SE, Martin PR, Phillips JB, Lyczak R, Hamill DR, Swan KA, Bowerman B (2000) DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Dev Biol 228:225–238

    Article  PubMed  CAS  Google Scholar 

  • Engstrom Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem 260:9114–9116

    PubMed  CAS  Google Scholar 

  • Euling S, Ambros V (1996) Reversal of cell fate determination in Caenorhabditis elegans vulval development. Development 122:2507–2515

    PubMed  CAS  Google Scholar 

  • Farland WH, MacInnis AJ (1978) In vitro thymidine kinase activity: present in Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala) but apparently lacking in Ascaris lumbricoides (Nematoda). J Parasitol 64:564–565

    Article  PubMed  CAS  Google Scholar 

  • Friedkin M (1973) Thymidylate synthetase. Adv Enzymol 38:235–292

    PubMed  CAS  Google Scholar 

  • Garkavi BL (1972) Species of Trichinella isolated from wild animals. Veterinariya 10:90–91

    CAS  Google Scholar 

  • Georgopapadakou NH, Walsh TJ (1996) Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother 40:279–291

    PubMed  CAS  Google Scholar 

  • Gołos B, Rode W (1999) An isotopic assay of dUTPase activity based on coupling with thymidylate synthase. Acta Biochim Pol 46:837–840

    PubMed  Google Scholar 

  • Gould SE (1970) Clinical pathology: diagnostic laboratory procedures. In: Gould SE (ed) Trichinosis in man and animals. Charles C. Thomas, Springfield, pp 190–221

    Google Scholar 

  • Gribaudo G, Riera L, Rudge TL, Caposio P, Johnson LF, Landolfo S (2002) Human cytomegalovirus infection induces cellular thymidylate synthase gene expression in quiescent fibroblasts. J Gen Virol 83:2983–2993

    PubMed  CAS  Google Scholar 

  • Heidelberger C, Danenberg PV, Moran RG (1983) Fluorinated pyrimidines and their nucleosides. Adv Enzymol 54:57–119

    CAS  Google Scholar 

  • Helin K (1998) Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev 8:28–35

    Article  PubMed  CAS  Google Scholar 

  • Hokari S, Hasegawa M, Sakagishi Y, Kikuchi G (1987) Deoxyuridine triphosphate nucleotidohydrolase activity and its correlation with multiplication of erythroid cells in rat spleen. Biochem Int 14:851–857

    PubMed  CAS  Google Scholar 

  • Hong Y, Roy R, Ambros V (1998) Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development 125:3585–3597

    PubMed  CAS  Google Scholar 

  • Horie N, Nozawa R, Takeishi K (1992) Identification of cellular differentiation-dependent nuclear factors that bind to a human gene for thymidylate synthase. Biochem Biophys Res Commun 185:127–133

    Article  PubMed  CAS  Google Scholar 

  • Hübscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    Article  PubMed  Google Scholar 

  • Jaffe JJ, Comley JC, Chrin LR (1982) Thymidine kinase activity and thymidine salvage in adult Brugia pahangi and Dirofilaria immitis. Mol Biochem Parasitol 5:361–370

    Article  PubMed  CAS  Google Scholar 

  • Johnson LF, Fuhrman CL, Wiedemann LM (1978) Regulation of dihydrofolate reductase gene expression in mouse fibroblasts during the transition from the resting to growing state. J Cell Physiol 97:397–406

    Article  PubMed  CAS  Google Scholar 

  • Kaiserman HB, Benbow RM (1987) Characterization of a stable major DNA polymerase alpha species devoid of DNA primase activity. Nucleic Acids Res 15:10249–10265

    Article  PubMed  CAS  Google Scholar 

  • Kaufman BT (1974) Methotrexate-agarose in the purification of dihydrofolate reductase. Methods Enzymol 34:272–281

    Article  PubMed  CAS  Google Scholar 

  • Kit S (1976) DNA synthesis and cancer. Mol Cell Biochem 11:161–182

    Article  PubMed  CAS  Google Scholar 

  • Lee DL, Ko RC, Yi XY, Yeung MH (1991) Trichinella spiralis: antigenic epitopes from the stichocytes detected in the hypertrophic nuclei and cytoplasm of the parasitized muscle fibre (nurse cell) of the host. Parasitology 102:117–123

    Article  PubMed  Google Scholar 

  • Lewis JA, Fleming JT (1995) Basic culture methods. Methods Cell Biol 48:3–29

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Schmitz JC, Lin X, Tai N, Yan W, Farrell M, Bailly M, Chen T, Chu E (2002) Thymidylate synthase as a translational regulator of cellular gene expression. Biochim Biophys Acta 1587:174–182

    Article  PubMed  CAS  Google Scholar 

  • Jasmer DP (1995) Trichinella spiralis: subversion of differentiated mammalian skeletal muscle cells. Parasitol Today 11:185–188

    Article  Google Scholar 

  • Jenh C-H, Geyer PK, Johnson LF (1985) Control of thymidylate synthase mRNA content and gene transcription in an overproducing mouse line. Mol Cell Biol 5:2527–2532

    PubMed  CAS  Google Scholar 

  • Jong AY, Yu K, Zhou B, Frgala T, Reynolds CP, Yen Y (1998) A simple and sensitive ribonucleotide reductase assay. J Biomed Sci 5:62–68

    Article  PubMed  CAS  Google Scholar 

  • Jongwutiwes S, Chantachum N, Kraivichian P, Siriyasatien P, Putaporntip C, Tamburrini A, La Rosa G, Sreesunparsirikul C, Yingyourd P, Pozio E (1998) First outbreak of human trichinellosis caused by Trichinella pseudospiralis. Clin Infect Dis 26:111–115

    Article  PubMed  CAS  Google Scholar 

  • Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98

    Article  PubMed  CAS  Google Scholar 

  • Knudsen KL, Hansen MB, Henriksen LR, Andersen BK, Lihme A (1992) Sulfone-aromatic ligands for thiophilic adsorption chromatography: purification of human and mouse immunoglobulins. Anal Biochem 201:170–177

    Article  PubMed  CAS  Google Scholar 

  • Ko RC, Fan L, Lee DL, Compton H (1994) Changes in host muscles induced by excretory/secretory products of larval Trichinella spiralis and Trichinella pseudospiralis. Parasitology 108:195–205

    Article  PubMed  Google Scholar 

  • Kuratli S, Lindh JG, Gottstein B, Smith DF, Connolly B (1999) Trichinella spp differential expression of two genes in the muscle larva of encapsulating and nonencapsulating species. Exp Parasitol 93:153–159

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Shen G, Johnson LF (1999) Complex transcriptional initiation patteren of the thymidylate synthase promoter in mouse tissues. Archiv Biochem Biophys 372:389–392

    Article  CAS  Google Scholar 

  • Leung RK, Ko RC (1997) In vitro effects of Trichinella spiralis on muscle cells. J Helminthol 71:113–118

    Article  PubMed  CAS  Google Scholar 

  • Mak CH, Sun KW, Ko RC (2001) Identification of some heat-induced genes of Trichinella spiralis. Parasitology 123:293–300

    PubMed  CAS  Google Scholar 

  • Mathews CK, Scrimgeour KG, Huennekens FM (1963) Dihydrofolate Reductase. Methods Enzymol 6:364–368

    Article  Google Scholar 

  • Miller DM, Shakes DC (1995) Immunofluorescence microscopy. Methods Cell Biol 48:365–394

    Article  PubMed  CAS  Google Scholar 

  • Nagano I, Wu Z, Takahashi Y (2009) Functional genes and proteins of Trichinella spp. Parasitol Res 104:197–207

    Article  PubMed  Google Scholar 

  • Niak CH, Su KW, Ko RC (2001) Identification of some heat-induced genes of Trichinella spiralis. Parasitology 123:293–300

    Google Scholar 

  • Ouellet J, Roy R (2007) The lin-35/Rb and RNAi pathways cooperate to regulate a key cell cycle transition in C. elegans. BMC Dev Biol 7:38

    Article  PubMed  Google Scholar 

  • Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608

    Article  PubMed  CAS  Google Scholar 

  • Pestalozzi BC, McGinn CJ, Kinsella TJ, Drake JC, Glennon MC, Allegra CJ, Johnston PG (1995) Increased thymidylate synthase protein levels are principally associated with proliferation but not cell cycle phase in asynchronous human cancer cells. Br J Cancer 71:1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Rahman L, Voeller D, Rahman M, Lipkowitz S, Allegra C, Barrett JC, Kaye FJ, Zajac-Kaye M (2004) Thymidylate synthase as an oncogene: A novel role for an essential DNA synthesis enzyme. Cancer Cell 5:341–351

    Article  PubMed  CAS  Google Scholar 

  • Rathod PK (1997) Antimalarial agents directed at thymidylate synthase. J Pharm Pharmacol 49(Suppl 2):704–711

    Google Scholar 

  • Riddle DL (1988) The dauer larva. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp 393–412

    Google Scholar 

  • Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, New York, pp 739–768

    Google Scholar 

  • Robinson MW, Connolly B (2005) Proteomic analysis of the excretory–secretory proteins of the Trichinella spiralis L1 larva, a nematode parasite of skeletal muscle. Proteomics 5:4525–4532

    Article  PubMed  CAS  Google Scholar 

  • Robinson MW, Greig R, Beattie KA, Lamont DJ, Connolly B (2007) Comparative analysis of the excretory–secretory proteome of the muscle larva of Trichinella pseudospiralis and Trichinella spiralis. Int J Parasitol 37:139–148

    Article  PubMed  CAS  Google Scholar 

  • Rode W, Scanlon KJ, Moroson BA, Bertino JR (1980) Regulation of thymidylate synthetase in mouse leukemia cells (L1210). J Biol Chem 255:1305–1311

    PubMed  CAS  Google Scholar 

  • Rode W, Szymanowska H (1976) Developmental pattern of thymidylate synthetase activity in silkworm: Bombyx mori L. Insect Biochem 6:333–337

    Article  CAS  Google Scholar 

  • Rode W, Zieliński Z, Dzik JM, Kulikowski T, Bretner M, Kierdaszuk B, Cieśla J, Shugar D (1990) Mechanism of inhibition of mammalian tumor and other thymidylate synthases by N4-hydroxy-dCMP, N4-hydroxy-5-fluoro-dCMP, and related analogues. Biochemistry 29:10835–10842

    Article  PubMed  CAS  Google Scholar 

  • Rosowsky A (1992) Development of new antifolate analogs as anticancer agents. Am J Pharm Edu 56:453–463

    Google Scholar 

  • Sagata N (1996) Meiotic mataphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell Biol 6:22–28

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 1.25–1.31

    Google Scholar 

  • Santi DV, Danenberg PV (1984) Folates in pyrimidine biosynthesis. In: Blakley RL, Benkovic SJ (eds) Folates and pterines, vol 1. Wiley, New York, pp 345–398

    Google Scholar 

  • Schertel C, Conradt B (2007) C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 134:3691–3701

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer BI, Dicker AP, Bertino JR (1990) Dihydrofolate reductase as a chemotherapeutic target. FASEB J 4:2441–2452

    PubMed  CAS  Google Scholar 

  • So NNC, Wong PCL, Ko RC (1992) Precursors of pyrimidine nucleotide biosynthesis for gravid Angiostrongylus cantonensis (Nematoda: Metastrongyloidea). Int J Parasitol 22:427–433

    Article  PubMed  CAS  Google Scholar 

  • Spector T (1978) Refinement of the coomassie blue method of protein quantitation. Anal Biochem 86:142–146

    Article  PubMed  CAS  Google Scholar 

  • Stewart GL (1983) Biochemistry. In: Campbell WC (ed) Trichinella and Trichinosis. Plenum Press, New York, pp 153–172

    Chapter  Google Scholar 

  • Stewart GL, Read CP (1973) Deoxyribonucleic acid metabolism in mouse trichinosis. J Parasitology 59:264–267

    Article  CAS  Google Scholar 

  • Takada N, Tada T (1988) Collection of newborn larvae of Trichinella spiralis in vitro. Jap J Parasitol 37:251–253

    Google Scholar 

  • Takemura Y, Jackman AL (1997) Folate-based thymidylate synthase inhibitors in cancer chemotherapy. Anti-Cancer Drugs 8:3–16

    Article  PubMed  CAS  Google Scholar 

  • Takemura M, Yamamoto T, Kitagawa M, Taya Y, Akiyama T, Asahara H, Linn S, Suzuki S, Tamai K, Yoshida S (2001) Stimulation of DNA polymerase α activity by Cdk2-phosphorylated Rb protein. Biochem Biophys Res Commun 282:984–990

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto I, Taniguchi Y, Miyoshi M, Kojo S (1991) Purification and characterization of thymidine kinase from regenerating rat liver. Biochim Biophys Acta 1079:348–352

    Article  PubMed  CAS  Google Scholar 

  • Vilpo JA (1983) Mitogen induction of deoxyuridine triphosphatase activity in human T and B lymphocytes. Med Biol 61:54–58

    PubMed  CAS  Google Scholar 

  • Wadsworth WG, Riddle DL (1988) Acidic intracellular pH shift during Caenorhabditis elegans larval development. Proc Natl Acad Sci U S A 85:8435–8438

    Article  PubMed  CAS  Google Scholar 

  • Wahl AF, Geis AM, Spain BH, Wong SW, Korn D, Wang TS-F (1988) Gene expression of human DNA polymerase α during cell proliferation and the cell cycle. Mol Cell Biol 8:5016–5025

    PubMed  CAS  Google Scholar 

  • Wińska P, Gołos B, Cieśla J, Zieliński Z, Frączyk T, Wałajtys-Rode E, Rode W (2005) Developmental arrest in C. elegans dauer larvae leaves high expression of enzymes involved in thymidylate biosynthesis, similar to that found in Trichinella muscle larvae. Parasitology 131:247–254

    Article  PubMed  Google Scholar 

  • Wong SW, Wahl AF, Yuan P-M, Arai N, Pearson BE, Arai K-I, Korn D, Hunkapiller MW, Wang TS-F (1988) Human DNA polymerase α gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J 7:37–47

    PubMed  CAS  Google Scholar 

  • Wranicz MJ, Gustowska L, Gabryel P, Kucharska E, Cabaj W (1998) Trichinella spiralis: induction of the basophilic transformation of muscle cells by synchronous newborn larvae. Parasitol Res 84:403–407

    Article  PubMed  CAS  Google Scholar 

  • Wu CL, Classon M, Dyson N, Harlow E (1996) Expression of dominant-negative mutant DP-1 blocks cell cycle progression in G1. Mol Cell Biol 16:3698–3706

    PubMed  CAS  Google Scholar 

  • Yasumasu I, Saitoh M, Fujimoto N, Kusunoki S (1979) Changes in activities of thymidylate synthetase and dihydrofolate reductase in sea urchin eggs after fertilization. Dev Growth Differ 21:237–243

    Article  CAS  Google Scholar 

  • Young DW (1994) Tilden lecture: studies on thymidylate synthase and dihydrofolate reductase-two enzymes involved in the synthesis of thymidine. Chem Soc Rev 23:119–128

    Article  CAS  Google Scholar 

  • Zierler MK, Marini NJ, Stowers DJ, Benbow RM (1985) Stockpiling of DNA polymerases during oogenesis and embryogenesis in the frog, Xenopus laevis. J Biol Chem 260:974–81

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Ministry of Science and Higher Education Grant No. N401 0612 33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Rode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dąbrowska, M. et al. (2010). Unusual Developmental Pattern of Expression of Enzymes Involved in DNA Biosynthesis in Trichinella spiralis and Trichinella pseudospiralis . In: Viola Magni, M. (eds) Detection of Bacteria, Viruses, Parasites and Fungi. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8544-3_14

Download citation

Publish with us

Policies and ethics