Skip to main content

Conservation biological control using fungal entomopathogens

  • Chapter
The Ecology of Fungal Entomopathogens

Abstract

Conservation biological control relies on modification of the environment or management practices to protect and encourage natural enemies that are already present within the system, thereby enhancing and improving their ability to control pest populations in a reliable way. Such strategies are only possible when based on a strong understanding of the ecology of the species concerned at the individual, community and landscape scale. Conservation biological control with entomopathogenic fungi includes the manipulation of both the crop environment and also habitats outside the crop. Further investment in conservation biological control with entomopathogenic fungi could make a substantial contribution to sustainable crop production either as stand alone strategies or, more importantly, in support of other biological and integrated pest management strategies.

Handling Editor: Helen Roy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney MR, Ruberson JR, Herzog GA, Kring TJ, Steinkraus DC, Roberts PM (2008) Rise and fall of cotton aphid (Hemiptera: Aphididae) populations in southeastern cotton production systems. J Econ Entomol 101:23–35

    Article  PubMed  Google Scholar 

  • Barbosa P (ed) (1998) Conservation biological control. Academic Press, San Diego, 396 pp

    Google Scholar 

  • Bastias BA, Anderson IC, Rangel-Castro JI, Parkin PI, Prosser JI, Cairney JWG (2008) Influence of repeated prescribed burning on incorporation of 13C from cellulose by soil forest fungi as determined by RNA stable Isotope probing. Soil Biol Biochem 41:467–472

    Article  CAS  Google Scholar 

  • Baverstock J, Elliot SL, Alderson PG, Pell JK (2005) Response of the aphid pathogenic fungus Pandora neoaphidis to aphid-induced plant volatiles. J Invertebr Pathol 89:157–164

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Clark SJ, Pell JK (2008a) Effect of seasonal abiotic conditions and field margin habitat on the infectivity and survival of Pandora neoaphidis. J Invertebr Pathol 97:282–290

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Baverstock KE, Clark SJ, Pell JK (2008b) Transmission of Pandora neoaphidis in the presence of co-occurring arthropods. J Invertebr Pathol 98:356–359

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Clark SJ, Alderson PG, Pell JK (2009a) Intraguild interactions between the entomopathogenic fungus Pandora neoaphidis and an aphid predator and parasitoid at the population scale. J Invertebr Pathol 102:167–172

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Roy HE, Pell JK (2009b) Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. BioControl. doi:10.1007/s10526-009-9238-5 (this SI)

  • Bing LA, Lewis LC (1993) Occurrence of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes and in Zea mays L. and virulence towards Ostrinia nubilalis (Hübner). Agric Ecosys Environ 45:147–156

    Article  Google Scholar 

  • Blackwell M (2009) Fungal evolution and taxonomy. BioControl. doi:10.1007/s10526-009-9243-8 (this SI)

  • Briese DT (1996) Biological control of weeds and fire management in protected natural areas: are they compatible strategies? Biol Conserv 77:135–141

    Article  Google Scholar 

  • Brodeur J, Boivin G (2006) Trophic and guild interactions in biological control. Springer, Berlin, 249 pp

    Book  Google Scholar 

  • Brown GC, Nordin GL (1986) Evaluation of an early harvest approach for induction of Erynia epizootics in alfalfa weevil populations. J Kansas Ent Soc 59:46–453

    Google Scholar 

  • Bruck D (2009) Fungal entomopathogens in the rhizosphere. BioControl doi:10.1007/s10526-009-9236-7 (this SI)

  • Byford WJ, Ward LK (1968) Effect of the situation of the aphid host at death on the type of spore produced by Entomphthora spp. Trans Brit Mycol Soc 51:598–600

    Article  Google Scholar 

  • Carruthers RI, Soper RS (1987) Fungal diseases. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 357–416

    Google Scholar 

  • Carruthers RI, Haynes DL, MacLeod DM (1985) Entomophthora muscae (Entomophthorales: Entomophthoraceae) in the onion fly, Delia antiqua (Diptera: Anthomyiidae). J Invertebr Pathol 45:81–93

    Article  Google Scholar 

  • Chandler D, Mietkiewski RT, Davidson G, Pell JK, Smits PH (1998) Impact of habitat type and pesticide application on the natural occurrence of entomopathogenic fungi in UK soils. IOBC-WPRS Bull 21:81–84

    Google Scholar 

  • Collins KL, Boatman ND, Wilcox A, Holland JM, Chaney K (2002) Influence of beetle banks on cereal aphid population predation in winter wheat. Agric Ecosyst Environ 93:337–350

    Article  Google Scholar 

  • Cory J, Ericsson JD (2009) Fungal entomopathogens in a tritrophic context. BioControl. doi:10.1007/s10526-009-9247-4 (this SI)

  • Cullen R, Warner KD, Jonsson M, Wratten SD (2008) Economics and adoption of conservation biological control. Biol Contr 45:272–280

    Article  Google Scholar 

  • Eilenberg J (1985) Relationship between the carrot fly (Psila rosae F.) and its fungal pathogens from Entomophthorales, particularly Entomophthora muscae (C.) Fres. Ph.D. thesis, Department of Zoology, Royal Veterinary and Agricultural University, Copenhagen, Denmark, 109 pp

    Google Scholar 

  • Eilenberg J (1987) Abnormal egg-laying behaviour of female carrot flies (Psila rosae) induced by the fungus Entomophthora muscae. Entomol Exp et Appl 52:17–24

    Google Scholar 

  • Eilenberg J (1988) Occurrence of fungi from Entomophthorales in a population of carrot flies (Psila rosae F.). Results 1985 and 1986. IOBC Bull 11:53–59

    Google Scholar 

  • Eilenberg J, Hajek AE, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • Ekesi S, Shah PA, Clark SJ, Pell JK (2005) Conservation biological control with the fungal pathogen Pandora neoaphidis; implications of aphid species, host plant and predator foraging. Agric For Entomol 7:21–30

    Article  Google Scholar 

  • Fargues J, Goettel MS, Smits N, Ouedraogo A, Vidal C, Lacey LA, Lomer CJ, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic hyphomycetes. Mycopath 135:171–181

    Article  Google Scholar 

  • Feng M-G, Chen C (2002) Incidences of infected Myzus persicae alatae in flight imply place to place dissemination of entomophthoralean fungi in aphid populations through migration. J Invertebr Pathol 81:53–56

    Article  PubMed  Google Scholar 

  • Feng M-G, Chen B, Chen C (2004) Wide dispersal of aphid-pathogenic Entomophthorales among aphid relies on migratory alates. Enviro Microbiol 6:510–516

    Article  Google Scholar 

  • Ferrari J, Müller CB, Kraaijeveld AR, Godfray HCJ (2001) Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55:1805–1814

    CAS  PubMed  Google Scholar 

  • Fiedler AF, Landis DA, Wratten SD (2008) Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol Contr 45:254–271

    Article  Google Scholar 

  • Fuentes-Contreras E, Pell JK, Niemeyer HM (1998) Influence of plant resistance at the third trophic level: interactions between parasitoids and entomopathogenic fungi of cereal aphids. Oecologia 117:426–432

    Article  Google Scholar 

  • Furlong MJ, Pell JK (1997) The influence of environmental factors on the persistence of Zoophthora radicans conidia. J Invertebr Pathol 69:223–233

    Article  Google Scholar 

  • Furlong MJ, Pell JK (2005) Interactions between fungal entomopathogens and other beneficial organisms. In: Vega FE, Blackwell M (eds) Insect–fungal associations ecology and evolution pp 51–73

    Google Scholar 

  • Fuxa JR (1998) Environmental manipulation for microbial control of insects. In: Barbosa P (ed) Conservation biological control. Academic Press, San Diego, pp 255–268

    Chapter  Google Scholar 

  • Gelernter WD (2005) Biological control products in a changing landscape. In: Proceedings of the BCPC international congress—crop science and technology. Glasgow, pp 293–300

    Google Scholar 

  • Griffiths GJK, Holland JM, Bailey A, Thomas MB (2008) Efficacy and economics of shelter habitats for conservation biological control. Biol Contr 45:200–209

    Article  Google Scholar 

  • Gurr GM, Wratten SD, Altieri MA (eds) (2004) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CSIRO Publishing, Australia, 232 pp

    Google Scholar 

  • Hajek AE (1999) Pathology and epizootiology of Entomophaga maimaiga infections in forest lepidoptera. Microbiol Mol Biol Rev 63:814–935

    CAS  PubMed  Google Scholar 

  • Hajek AE (2004) Natural enemies. An introduction to biological control. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Hajek AE, Delalibera I (2009) Fungal pathogens as classical biological control agents against arthropods. BioControl. doi:10.1007/s10526-009-9253-6 (this SI)

  • Hall IM, Dunn PH (1957) Entomogenous fungi on the spotted alfalfa aphid. Hilgardia 27:159–181

    Google Scholar 

  • Hardison JR (1976) Fire and flame for plant disease control. Ann Rev Phytopathol 14:359–379

    Google Scholar 

  • Hatting JL, Humber RA, Poprawski TJ, Miller RM (1999a) A survey of fungal pathogens of aphids from South Africa, with special reference to cereal aphids. Biol Contr 16:1–12

    Article  Google Scholar 

  • Hatting JL, Poprawski TJ, Miller RM (1999b) Managing the entomopathogenic fungus Conidiobolus thromboides in Russian wheat aphid cultures. Southwest Entomol 24:99–106

    Google Scholar 

  • Hemmati F (1999) Aerial dispersal of the entomopathogenic fungus Erynia neoaphidis. PhD Thesis, University of Reading, 186 pp

    Google Scholar 

  • Hemmati F, Pell JK, McCartney HA, Deadman ML (2001a) Airborne concentrations of conidia of Erynia neoaphidis above cereal fields. Mycol Res 105:485–489

    Article  Google Scholar 

  • Hemmati F, Pell JK, McCartney HA, Deadman ML (2001b) Aerodynamic diameter of conidia of Erynia neoaphidis and other entomophthoralean fungi. Mycol Res 106:233–238

    Article  Google Scholar 

  • Hennig-Sever N, Poliakov D, Broza M (2001) A novel method for estimation of wild fire intensity based on ash pH and soil microarthropod community. Pedobiologia 45:98–106

    Article  Google Scholar 

  • Hesketh H, Roy HE, Eilenberg J, Pell, JK, Hails RS (2009) Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl. doi:10.1007/s10526-009-9249-2 (this SI)

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Brandon Matheny P, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, MiÄ…dlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Holland JM (2007) The potential of agri-environment schemes to enhance biocontrol in arable crops. Asp Appl Biol 81:127–134

    Google Scholar 

  • Hollingsworth RG, Steinkraus DC, McNew RW (1995) Sampling to predict fungal epizootics on cotton aphids (Homoptera: Aphididae). Environ Entomol 24:1414–1421

    Google Scholar 

  • Huang Y, Zhen B, Li Z (1992) Natural and induced epizootics of Erynia ithacensis in mushroom hothouse populations of yellow-legged fungus gnats. J Invertebr Pathol 60:254–258

    Article  Google Scholar 

  • Hummel RL, Walgenbach JF, Barbercheck ME, Kennedy GG, Hoyt GD, Arellano C (2002) Effects of production practices on soil-borne entomopathogens in western North Carolina vegetable systems. Environ Entomol 31:84–91

    Article  Google Scholar 

  • Jackson M, Dunlap CA, Jaronski S (2009) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl. doi:10.1007/s10526-009-9240-y (this SI)

  • Jaronski S (2009) Ecological factors in the inundative use of fungal entomopathogens. BioControl. doi:10.1007/s10526-009-9248-3 (this SI)

  • Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Contr 45:172–175

    Article  Google Scholar 

  • Kaufmann JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecol 82:519–531

    Article  Google Scholar 

  • Keller S (1987a) Die Bedeutung ökologischer ausgleichsflächen für den Pflanzenschutz. Mitt Schweiz Land 35:56–65

    Google Scholar 

  • Keller S (1987b) Observations on the overwintering of Entomophthora planchoniana. J Invertebr Pathol 50:333–335

    Article  Google Scholar 

  • Keller S, Suter H (1980) Epizootiologische Untersuchungen über das Entomophthora-Auftreten bei feldbaulich wichtigen Blattlausarten. Oecologica Applicata 1:63–81

    Google Scholar 

  • Klingen I, Haukeland S (2006) The soil as a reservoir for natural enemies of pest insects and mites with emphasis on fungi and nematodes. In: Eilenberg J, Hokkanen HMT (eds) An ecological and societal approach to biological control. Springer, Berlin, pp 145–212

    Chapter  Google Scholar 

  • Klubertanz TH, Pedigo LP, Carlson RE (1991) Impact of fungal epizootics on the biology and management of the twospotted spider mite (Acari: Tetranychidae) in soybean. Environ Entomol 20:731–735

    Google Scholar 

  • Lagnaoui A, Radcliffe EB (1998) Potato fungicides interfere with entomopathogenic fungi impacting population dynamics of green peach aphid. Amer J Pot Res 75:19–25

    Article  CAS  Google Scholar 

  • MacDonald LH, Huffman EL (2004) Post-fire soil water repellency. Soil Sci Soc Amer J 68:1729–1734

    Article  CAS  Google Scholar 

  • MacLeod DM (1963) Entomophthorales infections. In: Steinhaus EA (ed) Insect pathology, an advanced treatise, vol 2. Academic Press, London, pp 189–231

    Google Scholar 

  • McLeod PJ, Steinkraus DS (1997) Influence of irrigation and fungicide sprays on prevalence of Erynia neoaphidis (Entomophthorales: Entomophthoraceae) infections of green peach aphid (Homoptera: Aphididae) on spinach. J Agric Urban Entomol 16:279–284

    Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Contr 43:145–155

    Article  Google Scholar 

  • Meyling NV, Hajek AE (2009) Principles from community and metapopulation ecology: application to fungal entomopathogens. BioControl. doi:10.1007/s10526-009-9246-5 (this SI)

  • Mietkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontr Sci Technol 7:565–575

    Article  Google Scholar 

  • Mochi DA, Monteiro AC, Barbosa JC (2005) Actions of pesticides to Metarhizium anisopliae in soil. Neotrop Entomol 34:961–971

    Article  CAS  Google Scholar 

  • Morjan WE, Pedigo LP, Lewis LC (2002) Fungicidal effects of glyphosate and glyphosate formulations on four species of entomopathogenic fungi. Environ Entomol 31:1206–1212

    Article  CAS  Google Scholar 

  • Nakashima Y, Birkett MA, Pye BJ, Pickett JA, Powell W (2004) The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata by the aphid parasitoid, Aphidius ervi. J Chem Ecol 30:1097–1110

    Article  Google Scholar 

  • Nielsen C, Eilenberg J, Dromph KM (2001) Entomophthorales on cereal aphids: characterisation, growth, virulence, epizootiology and potential for microbial control. Ministry of the Environment, Copenhagen, 58 pp

    Google Scholar 

  • Nielsen C, Jensen AB, Eilenberg J (2007) Survival of entomophthoralean fungi infecting aphids and higher flies during unfavourable conditions and implications for conservation biological control. In: Ekesi S, Maniania N (eds) Use of entomopathogenic fungi in biological pest management. Research Signpost, Kerala, India, pp 13–38

    Google Scholar 

  • Nordin GL (1984) Enhancement strategies for entomogenous fungi in integrated pest management. In: Proceedings of the China national academy of science/United States national academy of science joint symposium on biological control of insects, Beijing, China (pp 122–141). Science Press, Beijing, 445 pp

    Google Scholar 

  • Ownley B, Gwinn KD, Vega FE (2009) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl. doi:10.1007/s10526-009-9241-x (this SI)

  • Pell JK (2007) Ecological approaches to pest management using entomopathogenic fungi; concepts, theory, practice and opportunities. In: Ekesi S, Maniania N (eds) Use of entomopathogenic fungi in biological pest management. Research Signpost, Kerala, India, pp 145–177

    Google Scholar 

  • Pell JK, Pluke R, Clark SJ, Kenward MG, Alderson PG (1997) Interactions between two aphid natural enemies, the entomopathogenic fungus, Erynia neoaphidis and the predatory beetle, Coccinella septempunctata. J Invertebr Pathol 69:261–268

    Article  Google Scholar 

  • Pell JK, Eilenberg J, Hajek AE, Steinkraus DC (2001) Biology, ecology and pest management potential of Entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents, progress, problems and potential. CABI Publishing, Wallingford, pp 71–153

    Chapter  Google Scholar 

  • Perrin RM (1975) The role of perennial stinging nettle, Urtica dioica, as a reservoir of beneficial natural enemies. Ann Appl Biol 81:289–297

    Article  Google Scholar 

  • Pickering J, Dutcher JD, Ekbom BS (1989) An epizootic caused by Erynia neoaphidis and E. radicans (Zygomycetes: Entomophthoraceae) on Acrythosiphon pisum (Homoptera: Aphidae) on legumes under overhead irrigation. J App Entomol 107:331–333

    Article  Google Scholar 

  • Pimentel D (2008) Preface special issue: conservation biological control. Biol Contr 45:171

    Article  Google Scholar 

  • Powell W, Wilding N, Brobyn PJ, Clark SJ (1986) Interference between parasitoids (Hym, Aphidiidae) and fungi (Entomophthorales) attacking cereal aphids. Entomophaga 31:193–199

    Article  Google Scholar 

  • Powell W, Walters K, A’Hara S, Ashby J, Stevenson H, Northing P (2003) Using field margin diversification in agri-environment schemes to enhance aphid natural enemies. In: Rossing WAH, Poehling HM, Burgio G (eds) Landscape management for functional biodiversity. IOBC/WPRS Bulletin 26/4:123–128

    Google Scholar 

  • Roy HE, Pell JK, Clark SJ, Alderson PG (1998) Implications of predator foraging on aphid pathogen dynamics. J Invertebr Pathol 71:236–247

    Article  CAS  PubMed  Google Scholar 

  • Roy HE, Pell JK, Alderson PG (2001) Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocon Sci Technol 11:99–110

    Article  Google Scholar 

  • Roy HE, Alderson PG, Pell JK (2003) Effect of spatial heterogeneity on the role of Coccinella septempunctata as an intra-guild predator of the aphid pathogen Erynia neoaphidis. J Invertebr Pathol 82:85–95

    Article  CAS  PubMed  Google Scholar 

  • Roy HE, Brodie EL, Chandler D, Goettel MS, Pell JK, Wajnberg E, Vega FE (2009) Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. BioControl. doi:10.1007/s10526-009-9244-7 (this SI)

  • Ruano-Rossil JM, Radcliffe EB, Ragsdale DW (2002) Disruption of entomopathogenic fungi of green peach aphid, Myzus persicae (Sulzer), by fungicides used to control potato late blight. In: Simon JC, Dedryver CA, Rispe C, Hullé M (eds) Aphids in a New Millenium. Institut National de la Recherche Agronomique, Paris, pp 365–370

    Google Scholar 

  • Shah PA, Clark SJ, Pell JK (2004a) Assessment of aphid host susceptibility and isolate variability in Pandora neoaphidis (Zygomycota: Entomophthorales). Biol Contr 29:90–99

    Article  Google Scholar 

  • Shah PA, Tymon AM, Pell JK (2004b) Novel strategies for aphid control using entomopathogenic fungi HGCA. Project Report Sustainable Arable LINK Project 1159. London, HGCA, 92 pp

    Google Scholar 

  • Sosa-Gomez DR, Moscardi F (1994) Effect of till and no-till soybean cultivation on dynamics of entomopathogenic fungi in the soil. Fla Entomol 77:284–287

    Article  Google Scholar 

  • Sosa-Gomez DR, Delpin KE, Moscardi F, Farias JRB (2001) Natural occurrence of the entomopathogenic fungi Metarhizium, Beauveria, and Paecilomyces in soybean under till and no-till cultivation systems. Neotrop Entomol 30:407–410

    Google Scholar 

  • Sprenkel RK, Brooks WM, Van Duyn JW, Deitz LL (1979) The effects of three cultural variables on the incidence of Nomuraea rileyi, phytophagous Lepidoptera, and their predators on soybeans. Environ Entomol 8:334–339

    Google Scholar 

  • Steenberg T, Ogaard L (2000) Mortality in hibernating turnip moth larvae, Agrotis segetum, caused by Tolypocladium cylindrosporum. Mycol Res 104:87–91

    Article  Google Scholar 

  • Steinkraus DC (2007) Documentation of naturally-occurring pathogens and their impact in agroecosystems. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 267–281

    Chapter  Google Scholar 

  • Steinkraus DC, Boys GO (1997) Update on prediction of epizootics with extension-based sampling service (pp 1047–1048). In: Proceedings of Beltwide cotton conferences, Jan 6–10 1997, New Orleans. Nat Cotton Council Am, Memphis, TN

    Google Scholar 

  • Steinkraus DC, Zawislak J (2005) Utilizing natural biological control for cotton aphids: cotton aphid fungus sampling service twelth year. Summ Ark Cotton Res 220–223

    Google Scholar 

  • Steinkraus DC, Mueller AJ, Humber RA (1993) Furia virescens (Thaxter) Humber (Zygomycetes: Entomophthoraceae) infections in the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera: Noctuidae) in Arkansas with notes on other natural enemies. J Entomol Sci 28:376–386

    Google Scholar 

  • Steinkraus DC, Hollingsworth RG, Slaymaker PH (1995) Prevalence of Neozygites fresenii (Entomophthorales: Neozygitaceae) on cotton aphids (Homoptera: Aphididae) in Arkansas cotton. Environ Entomol 24:465–474

    Google Scholar 

  • Steinkraus DC, Boys GO, Hollingsworth RG, Bacheler JS, Durant JA, Freeman BL, Gaylor MJ, Harris FA, Knutson A, Lentz GL, Leonard BR, Luttrell R, Parker D, Powell JD, Ruberson JR, Sorenson C (1996) Multistate sampling for Neozygites fresenii in cotton. In: Proceedings 1996 Beltwide cotton research conferences, Nashville, TN, pp 735–738

    Google Scholar 

  • Steinkraus DC, Boys GO, Bagwell RD, Johnson DR, Lorenz GM, Meyers H, Layton MB, O’Leary PF (1998) Expansion of extension-based aphid fungus sampling service to Louisiana and Mississippi. 1998 Beltwide Cotton Conferences, San Diego, CA, pp 1239–1242

    Google Scholar 

  • Sunderland KD, Axelsen JA, Dromph K, Freier B, Hemptinne J-L, Holst NH, Mols PJM, Petersen MK, Powell W, Ruggle P, Triltsch H, Winder L (1998) Pest control by a community of natural enemies. Acta Jutlandica 72:271–326

    Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, London, 666 pp

    Google Scholar 

  • Townsend RJ, Glare TR, Willoughby BE (1995) The fungi Beauveria spp. cause epizootics in grass grub populations in Waikato. In: Proceedings of the 48th New Zealand plant protection conference, pp 237–241

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Let 8:857–874

    Article  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2008) Conservation biological control and enemy diversity on a landscape scale. Biol Contr 45:238–253

    Article  Google Scholar 

  • Tymon AM, Pell JK (2005) Use of ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis. Mycol Res 109:285–290

    Article  CAS  PubMed  Google Scholar 

  • Tymon AM, Shah PA, Pell JK (2004) PCR-based molecular discrimination of Pandora neoaphidis isolates from related entomopathogenic fungi and development of species-specific diagnostic primers. Mycol Res 108:1–15

    Article  CAS  Google Scholar 

  • van Veen FJF, Muller CB, Pell JK, Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200

    Article  PubMed  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley B, Pell JK, Rangel D, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Contr 45:185–199

    Article  Google Scholar 

  • Wekesa VW, Knapp M, Delalibera I (2008) Side-effects of pesticides on the life cycle of the mite pathogenic fungus Neozygites floridana. Exp Appl Acarol 46:287–297

    Article  CAS  PubMed  Google Scholar 

  • Wilding N, Mardell SK, Brobyn PJ (1986) Introducing Erynia neoaphidis into a field population of Aphis fabae: form of the inoculum and effect of irrigation. Ann Appl Biol 108:373–385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Pell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 International Organization for Biological Control (IOBC)

About this chapter

Cite this chapter

Pell, J.K., Hannam, J.J., Steinkraus, D.C. (2009). Conservation biological control using fungal entomopathogens. In: Roy, H.E., Vega, F.E., Chandler, D., Goettel, M.S., Pell, J., Wajnberg, E. (eds) The Ecology of Fungal Entomopathogens. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3966-8_13

Download citation

Publish with us

Policies and ethics