Skip to main content

Magneto-Optical Investigations and Ion Beam-Induced Modification of Heusler Compounds

  • Chapter
Spintronics

Abstract

Half-metallic Co-based Heusler compounds are attracting attention due to their anticipated use as high-performance materials for spintronics applications, such as spin-source or spin-detector. In order to use these materials in applications, their structural and magnetic properties must be well understood. The important phenomena in those materials are, amongst others, exchange and spin–orbit coupling, the latter one giving rise to effect such as magnetic anisotropy and magneto-optical Kerr effect. In this chapter, we present our investigations of magnetic exchange stiffness, magnetic anisotropy, magnetization reversal, and magneto-optical Kerr effect in Co-based Heusler compound thin films. Furthermore, we have also investigated the modification of the compounds under He+ and Ga+ ion beam irradiation with the aim of improving and tailoring structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groot RA, Mueller FM, Engen PGv, Buschow KHJ (1983) Phys Rev Lett 50:2024

    Article  Google Scholar 

  2. Kübler J, Fecher GH, Felser C (2007) Phys Rev B 76:024414

    Article  Google Scholar 

  3. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ, Morais J (2005) Phys Rev B 72:184434

    Article  Google Scholar 

  4. Galanakis I, Dederichs PH, Papanikolaou N (2002) Phys Rev B 66:174429

    Article  Google Scholar 

  5. Fecher GH, Felser C (2007) J Phys D, Appl Phys 40:1582

    Article  CAS  Google Scholar 

  6. Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim JJ, Ueda S (2006) Phys Rev B 74(10):104405

    Article  Google Scholar 

  7. Webster PJ (1971) J Phys Chem Solids 32:1221

    Article  CAS  Google Scholar 

  8. Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr HA, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) J Phys D, Appl Phys 39:803

    Article  CAS  Google Scholar 

  9. Trudel S, Gaier O, Hamrle J, Hillebrands B (2010) J Phys D, Appl Phys 43(19):193001

    Article  Google Scholar 

  10. Ravelosona D, Chappert C, Mathet V (2000) Appl Phys Lett 76:236

    Article  CAS  Google Scholar 

  11. Ravelosona D, Chappert C, Bernas H, Halley D, Samson Y, Marty A (2002) J Appl Phys 91:8082

    Article  CAS  Google Scholar 

  12. Melngailis J (1987) J Vac Sci Technol B 5(2):469

    Article  Google Scholar 

  13. Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88(19):192508

    Article  Google Scholar 

  14. Rajanikanth A, Takahashi YK, Hono K (2009) J Appl Phys 105:063916 and references therein

    Article  Google Scholar 

  15. Shan R, Sukegawa H, Wang WH, Kodzuka M, Furubayashi T, Ohkubo T, Mitani S, Inomata K, Hono K (2009) Phys Rev Lett 102:246601

    Article  CAS  Google Scholar 

  16. Dowben PA, Skomski R (2004) J Appl Phys 95:7453

    Article  CAS  Google Scholar 

  17. Gaier O, Hamrle J, Trudel S, Hillebrands B, Schneider H, Jakob G (2009) J Phys D, Appl Phys 42(23):232001

    Article  Google Scholar 

  18. Hamrle J, Gaier O, Min SG, Hillebrands B, Sakuraba Y, Ando Y (2009) J Phys D, Appl Phys 42:084005

    Article  Google Scholar 

  19. Gaier O, Hamrle J, Trudel S, Parra AC, Hillebrands B, Arbelo E, Herbort C, Jourdan M (2009) J Phys D, Appl Phys 42(8):084004

    Article  Google Scholar 

  20. Kubota T, Hamrle J, Sakuraba Y, Gaier O, Oogane M, Sakuma A, Hillebrands B, Takanashi K, Ando Y (2009) J Appl Phys 106(11):113907

    Article  Google Scholar 

  21. Belmeguenai M, Zighem F, Roussigné Y, Chérif SM, Moch P, Westerholt K, Woltersdorf G, Bayreuther G (2009) Phys Rev B 79:024419

    Article  Google Scholar 

  22. Buschow KHJ, van Engen PG, Jongebreur R (1983) J Magn Magn Mater 38:1

    Article  CAS  Google Scholar 

  23. Fecher G (2008). Private communication

    Google Scholar 

  24. Block T, Felser C, Jakob G, Ensling J, Mühling B, Gütlich P, Cava R (2003) J Solid State Chem 176:646

    Article  CAS  Google Scholar 

  25. Galanakis I, Mavropoulos P, Dederichs PH (2006) J Phys D, Appl Phys 39:765

    Article  CAS  Google Scholar 

  26. Fecher GH, Kandpal HC, Wurmehl S, Felser C, Schönhense G (2006) J Appl Phys 99:08J106

    Article  Google Scholar 

  27. Kübler J (1984) Physica B and C 127:257

    Article  Google Scholar 

  28. Gaier O, Hamrle J, Hermsdoerfer SJ, SchultheißH, Hillebrands B, Sakuraba Y, Oogane M, Ando Y (2008) J Appl Phys 103(10):103910

    Article  Google Scholar 

  29. Kandpal HC, Fecher GH, Felser C (2007) J Phys D, Appl Phys 40:1507

    Article  CAS  Google Scholar 

  30. Özdoğan K, Aktaş B, Galanakis I, Şaşioğlu E (2007) J Appl Phys 101:073910

    Article  Google Scholar 

  31. Özdoğan K, Şaşioğlu E, Aktaş B, Galanakis I (2006) Phys Rev B 74:172412

    Article  Google Scholar 

  32. Şaşıoğlu E, Sandratskii LM, Bruno P, Galanakis I (2005) Phys Rev B 72:184415.

    Article  Google Scholar 

  33. Kurtulus Y, Dronskowski R, Samolyuk GD, Antropov VP (2005) Phys Rev B 71:014425

    Article  Google Scholar 

  34. Liu X, Sooryakumar R, Gutierrez CJ, Prinz GA (1994) J Appl Phys 75(10):7021

    Article  CAS  Google Scholar 

  35. Hubert A, Schäfer R (2009) Magnetic domains: the analysis of magnetic microstructures. Springer, Berlin

    Google Scholar 

  36. Hillebrands B (2005) In: Zhu Y (ed) Modern techniques for characterizing magnetic materials. Springer, Berlin, p 543

    Google Scholar 

  37. Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schäfer R, Jourdan M (2006) J Appl Phys 100(10):103904

    Article  Google Scholar 

  38. Trudel S, Wolf G, Hamrle J, Hillebrands B, Klaer P, Kallmayer M, Elmers HJ, Sukegawa H, Wang W, Inomata K (2011) Phys Rev B 83:104412

    Article  Google Scholar 

  39. Trudel S, Hamrle J, Hillebrands B, Taira T, Yamamoto M (2010) J Appl Phys 107:043912

    Article  Google Scholar 

  40. Krebs JJ, Jonker BT, Prinz GA (1987) J Appl Phys 61:2596

    Article  CAS  Google Scholar 

  41. Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K, Felser C (2007) J Phys D, Appl Phys 40(6):1563

    Article  CAS  Google Scholar 

  42. Postava K, Hrabovsky D, Pistora J, Fert AR, Visnovsky S, Yamaguchi T (2002) J Appl Phys 91(10):7293

    Article  CAS  Google Scholar 

  43. Buchmeier M, Schreiber R, Bürgler DE, Schneider CM (2009) Phys Rev B 79:064402

    Article  Google Scholar 

  44. Muduli PK, Rice WC, He L, Collins BA, Chu YS, Tsui F (2009) J Phys Condens Matter 21:296005

    Article  CAS  Google Scholar 

  45. Trudel S, Wolf G, Schultheiss H, Hamrle J, Hillebrands B, Kubota T, Ando Y (2010) Rev Sci Instrum 81:026105

    Article  Google Scholar 

  46. Osgood RM III, Bader SD, Clemens BM, White RL, Matsuyama H (1998) J Magn Magn Mater 182(3):297

    Article  CAS  Google Scholar 

  47. Visnovsky S (1986) Czechoslov J Phys 36:625

    Article  Google Scholar 

  48. Visnovsky S, Lopusnik R, Bauer M, Bok J, Fassbender J, Hillebrands B (2001) Opt Express 9(3):121

    Article  CAS  Google Scholar 

  49. Trudel S, Wolf G, Schultheiss H, Hamrle J, Hillebrands B (2010) J Phys Conf Ser 200(11):112010

    Article  Google Scholar 

  50. Wolf G, Hamrle J, Hillebrands B (2011) J Appl Phys 110:043904

    Article  Google Scholar 

  51. Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K (2006) Appl Phys Lett 89:4

    Google Scholar 

  52. Chappert C, Bernas H, Ferré J, Kottler V, Jamet JP, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H (1998) Science 280:1919

    Article  CAS  Google Scholar 

  53. Devolder T, Ferré J, Chappert C, Bernas H, Jamet JP, Mathet V (2001) Phys Rev B 64:064415

    Article  Google Scholar 

  54. Mougin A, Mewes T, Lopusnik R, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J, Hillebrands B (2000) IEEE Trans Magn 36:2647

    Article  CAS  Google Scholar 

  55. McCord J, Gemming T, Schultz L, Fassbender J, Liedke MO, Frommberger M, Quandt E (2005) Appl Phys Lett 86:162502

    Article  Google Scholar 

  56. Engel D, Schmoranzer H, Ehresmann A, Mertins HC, Abramsohn D, Gudat W (2004) Physica B 345:185

    Article  CAS  Google Scholar 

  57. Fassbender J, McCord J (2008) J Magn Magn Mater 320:579

    Article  CAS  Google Scholar 

  58. Nastasi M, Mayer JW, Hirvonen JK (1996) Ion-solid interactions: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  59. Gaier O, Hamrle J, Hillebrands B, Kallmayer M, Pörsch P, Schönhense G, Elmers HJ, Fassbender J, Gloskovskii A, Jenkins CA, Felser C, Ikenaga E, Sakuraba Y, Tsunegi S, Oogane M, Ando Y (2009) Appl Phys Lett 94(15):152508

    Article  Google Scholar 

  60. Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Reuscher B, Brodyanski A, Kopnarski M, Postava K, Felser C (2007) J Phys D, Appl Phys 40(6):1558

    Article  CAS  Google Scholar 

  61. Ziegler JF, Biersack JF, Littmark JP (1985) The stopping and range of ions in solids. Pergamon, Elmsford

    Google Scholar 

  62. Ziegler JF (2006) SRIM manual. www.srim.org

  63. http://www.bam.de/de/service/publikationen/powder_cell.htm

  64. Bernas H, Attané JP, Heinig KH, Halley D, Ravelososn D, Marty A, Auric P, Chappert C, Samson Y (2003) Phys Rev Lett 91:077203

    Article  CAS  Google Scholar 

  65. Gercsi Z, Hono K (2007) J Phys Condens Matter 19:326216

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all our collaborators. Without their contributions this work would be impossible. Namely (and their respective groups) Martin Aeschlimann, Yasuo Ando, Stanislav Chadov, Mirko Cincetti, Hans-Joachim Elmers, Jürgen Fassbender, Gerhard H. Fecher, Claudia Felser, Andrii Hloskovskii, Koichiro Inomata, Martin Jourdan, Gerhard Jakob, Jürgen Kübler, Takahide Kubota, Mikihiko Oogane, Kamil Postava, Yuya Sakuraba, Horst Schneider, and Masafumi Yamamoto. We gratefully acknowledge DFG FG 559 (project P9) for financing. ST acknowledges the Alexander von Humboldt foundation for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Hamrle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamrle, J., Gaier, O., Trudel, S., Wolf, G., Hillebrands, B. (2013). Magneto-Optical Investigations and Ion Beam-Induced Modification of Heusler Compounds. In: Felser, C., Fecher, G. (eds) Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3832-6_13

Download citation

Publish with us

Policies and ethics