Skip to main content

Imine-Based Vanadium Catalysts for α-Olefin Polymerization

  • Chapter
  • First Online:
Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 34))

Abstract

Advances over the last decade in the development of vanadium-based pro-catalysts bearing ligands containing the imine functionality are discussed in terms of their synthesis, characterization and their ability to oligmerize/polymerize α-olefins. The chapter is organized by ligand type, considering initially ligands which chelate (bi- and tri-dentate) only through nitrogen centres, before discussing those binding via nitrogen and oxygen (bi-, tri- and tetra-dentate), those with nitrogen, oxygen and sulfur donors (penta- and hexa-dentate) and finally a number of ligand systems which are either mono-dentate or for which the term imine can be more loosely applied, such as the heterocycle pyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ar:

Aryl

iBu:

Isobutyl

tBu:

tert-butyl

DMAC:

Dimethylaluminum chloride

DSC:

Differential scanning calorimetry

EPR:

Electron paramagnetic resonance

Et:

Ethyl

ETA:

Ethyltrichloroacetate

FTIR:

Fourier transform infrared

g/mmol h bar:

Grams per millimole (of pro-catalyst) per hour per bar

iPr:

Isopropyl

MAO:

Methylaluminoxane

Me:

Methyl

MLCT:

Metal to ligand charge transfer

MMAO:

Modified or methylisobutylaluminoxane

M n :

Number average molecular weight

M w :

Weight average molecular weight

Nacnac:

2,4-pentanediimine anion

NBE:

Norbornene

NMR:

Nuclear magnetic resonance

nPr:

n-propyl

PDI:

Polydispersity index

Ph:

Phenyl

Py:

Pyridine

THF:

Tetrahydrofuran

TIBA:

Triisobutylaluminum

TMEDA:

Tetramethylethylenediamine

TOF:

Turn over frequency

Tp/ :

Tris(3,5-dimethylpyrazolyl)methane

Tp*:

Tris(3,5-dimethylpyrazolyl)borato

TTPB:

Trityl tetrakis(pentafluorophenyl)borate

UV–Vis:

Ultraviolet-visible

XRF:

X-ray fluorescence

References

  1. Sinclair KB, Wilson RB (1994) Metallocene catalysts: a revolution in olefin polymerization. Chem Ind 21:857–862

    Google Scholar 

  2. McDaniel MP (1988) Controlling polymer properties with the Phillips chromium catalysts. Ind Eng Chem Res 27(9):1559–1564. doi:10.1021/ie00081a001

    Article  CAS  Google Scholar 

  3. Hirsekorn KF, Hulley EB, Wolczanski PT, Cundari TR (2008) Olefin substitution in (silox)3M(olefin) (silox = tBu3SiO; M = Nb, Ta): The role of density of states in second vs third row transition metal reactivity. J Am Chem Soc 130:1183–1196. doi:10.1021/ja074972j

    Article  CAS  Google Scholar 

  4. Nomura K (2005) Design of new generation vanadium complex catalysts offering new possibilities for controlled olefin polymerization. In: Bevy LP (ed) New developments in catalysis research. Nova Science Publishers Inc 7:199–217. ISBN: 1-59454-440-9

    Google Scholar 

  5. See for example, Redshaw C (2010) Vanadium procatalysts bearing chelating aryloxides: structure-activity trends in ethylene polymerization. Dalton Trans 5595–5604. doi:10.1039/b924088h

    Google Scholar 

  6. Raspolli Galletti AM, Pampaloni G (2010) Niobium complexes as catalytic precursors for the polymerization of olefins. Coord Chem Rev 254:525–536. doi:10.1016/j.ccr.2009.07.026

    Article  CAS  Google Scholar 

  7. Milione S, Cavallo G, Tedesco C, Grassi A (2002) Synthesis of α-diimine V(III) complexes and their role as ethylene polymerisation catalysts. Dalton Trans 1839–1846. doi: 10.1039/b105931a

    Google Scholar 

  8. Xu, B-C, Hu T, Wu J-Q, Hu N-H, Li Y-S (2009) Novel vanadium(III) complexes with bidentate N,N-chelating iminopyrrolide ligands: synthesis, characterization and catalytic behaviour of ethylene polymerization and copolymerization with 10-undecen-1-ol. Dalton Trans 8854-8863. doi: 10.1039/b909495d

    Google Scholar 

  9. Kim W-K, Fevola MJ, Liable-Sands LM, Rheingold AL, Theopold KH (1998) [(Ph)2nacnac]MCl2(THF)2 (M = Ti, V, Cr): A new class of homogeneous olefin polymerization catalysts featuring β-diiminate ligands. Organometallics 17:4541–4543. doi:10.1021/om9806545

    Article  CAS  Google Scholar 

  10. Brussee EAC, Meetsma A, Hessen B, Teuben JH (1998) Electron-deficient vanadium(III) alkyl and allyl complexes with amidinate ancillary ligands. Organometallics 17:4090–4095. doi:10.1021/om980431e

    Article  CAS  Google Scholar 

  11. Brussee EAC, Meetsma A, Hessen B, Teuben JH (2000) The N,N’-bis(trimethylsilyl)pentafluorobenzamidinate ligand: enhanced ethane oligomerisation with a neutral V(III) bis(benzamidinate) alkyl catalyst. Chem Commun 497–498. doi: 10.1039/b000397m

    Google Scholar 

  12. Shmulinson M, Pilz A, Eisen MS (1997) Carbon–fluorine bond activation in perfluorobenzonitrile by LiN(SiMe3)2. Synthesis of (Me3Si)2NC6F4CN-4 and crystal structure of LiN(C6F4CN-4)2·2C4H8O. Dalton Trans 2483–2486. doi:10.1039/a700682i

    Google Scholar 

  13. Liguori D, Centore R, Csok Z, Tuzi A (2004) Polymerization of propene and 1, 3-butadiene with vanadyl(V) monoamidinate precatalysts and MAO or dialkylaluminium chloride cocatalysts. Macromol Chem Phys 205:1058–1063. doi:10.1002/macp.200300234

    Article  CAS  Google Scholar 

  14. Brandsma MJR, Brussee EAC, Meetsma A, Hessen B, Teuben JH (1998) An amidinate ligand with a pendant amine functionality: synthesis of a vanadium(III) complex and ethene polymerization catalysis. Eur J Inorg Chem 1867–1870. doi: 10.1002/(SICI)1099-0682(199812)1998:12

    Google Scholar 

  15. Severn JR, Duchateau R, Chadwick JC (2005) Immobilization and activation of vanadium(III) and titanium(III) single-site catalysts for ethylene polymerization using MgCl2-based supports. Polym Int 54:837–841. doi:10.1002/pi.1779

    Article  CAS  Google Scholar 

  16. Aharonovich S, Botoshansky M, Tumanskii B, Nomura K, Waymouth RM, Eisen MS (2010) Mono- and bis-amidinate 2,6-xylylimido vanadium chlorides: synthesis, structure and reactivity. Dalton Trans 5643–5649. doi: 10.1039/b925974k

    Google Scholar 

  17. Gibson VC, Redshaw C, Solan GA (2007) Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chem Rev 107:1745–1776. doi:10.1021/cr068437y

    Article  CAS  Google Scholar 

  18. Hanton MJ, Tenza K (2008) Bis(imino)pyridine complexes of the first-row transition metals: alternative methods of activation. Organometallics 27:5712–5716. doi:10.1021/om800744j

    Article  CAS  Google Scholar 

  19. Colamarco E, Milione S, Cuomo C, Grassi A (2004) Homo- and copolymerization of butadiene catalyzed by an bis(imino)pyridyl vanadium complex. Macromol Rapid Commun 25:450–454. doi:10.1002/marc.200300022

    Article  CAS  Google Scholar 

  20. Reardon D, Conan F, Gambarotta S, Yap G, Wang Q (1999) Life and death of an active ethylene polymerization catalyst. Ligand involvement in catalyst activation and deactivation. Isolation and characterization of two unprecedented neutral and anionic vanadium(I) alkyls. J Am Chem Soc 121:9318–9325. doi:10.1021/ja990263x

    Article  CAS  Google Scholar 

  21. Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) N, N, N-Tridentate iron(II) and vanadium(III) complexes Part I. Synthesis and characterization. J Mol Catal 222:9–15. doi:10.1016/j.molcata.2004.07.014

    Article  CAS  Google Scholar 

  22. Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) N, N, N-Tridentate iron(II) and vanadium(III) complexes Part II. Catalytic behaviour for the oligomerization and polymerization of ethene and characterization of the resulting products. J Mol Catal 222:17–25. doi:10.1016/j.molcata.2004.07.015

    Article  CAS  Google Scholar 

  23. Schmidt R, Welch MB, Palackal SJ, Alt HG (2002) Heterogenized iron(II) complexes as highly active ethene polymerization catalysts. J Mol Catal 179:155–173. doi:10.1016/S1381-1169(01)00333-8

    Article  CAS  Google Scholar 

  24. Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) N, N, N-Tridentate iron(II) and vanadium(III) complexes Part III. UV–Vis spectroscopic studies of reactions of ethene-oligomerization and polymerization catalysts with methyl aluminoxane cocatalyst. J Mol Catal 222:27–45. doi:10.1016/j.molcata.2004.06.026

    Article  CAS  Google Scholar 

  25. Romero J, Carrillo-Hermosilla F, Antiñolo A, Otero A (2009) Homogeneous and supported bis(imino)pyridyl vanadium(III) catalysts. J Mol Catal A Chem 304:180–186. doi:10.1016/j.molcata.2009.02.010

    Article  CAS  Google Scholar 

  26. Lang JRV, Denner CE, Alt HG (2010) Homogeneous catalytic dimerization of propylene with bis(imino)pyridine vanadium(III) complexes. J Mol Catal A Chem 222:45–49. doi:10.1016/j.molcata.2010.02.013

    Article  Google Scholar 

  27. Al-Benna S, Sarsfield MJ, Thornton-Pett M, Ormsby DL, Maddox PJ, Brẻs P, Bochmann M (2000) Sterically hindered iminophosphorane complexes of vanadium, iron, cobalt and nickel: a synthetic and catalytic study. J Chem Soc Dalton Trans 4247–4257. doi: 10.1039/b006329k

    Google Scholar 

  28. Abbo HS, Mapolie SF, Darkwa J, Titinchi SJJ (2007) Bis(pyrazolyl)pyridine vanadium(III) complexes as highly active ethylene polymerization catalysts. J Organomet Chem 692:5327–5330. doi:10.1016/j.organchem.2007.08.035

    Article  CAS  Google Scholar 

  29. Tomov AK, Gibson VC, Zaher D, Elsegood MRJ, Dale SH (2004) Bis(benzimidazole)amine vanadium catalysts for olefin polymerisation and co-polymerisation: thermally robust, single-site catalysts activated by simple alkylaluminium reagents. Chem Commun 1956–1957. doi: 10.1039/b407065h

    Google Scholar 

  30. Nakayama Y, Bando H, Sonobe Y, Suzuki Y, Fujita T (2003) Highly active, thermally robust v-based new olefin polymerization catalyst system. Chem Lett 32:766–767. doi:10.1246/cl.2003.766

    Article  CAS  Google Scholar 

  31. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Development of single-site new olefin polymerization catalyst systems using mgcl2-based activators: MAO-free MgCl2-supported FI catalyst systems. Bull Chem Soc Jpn 77:617–625. doi:10.1246/bcsj.77.617

    Article  CAS  Google Scholar 

  32. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Olefin polymerization behavior of bis(phenoxy-imine) Zr, Ti and V complexes with MgCl2-based cocatalysts. J Mol Catal A Chem 213:141–150. doi:10.1016/j.molcata.2003.11.025

    Article  CAS  Google Scholar 

  33. Nakayama Y, Saito J, Bando H, Fujita T (2006) MgCl2/R /n Al(OR)3-n: an excellent activator/support for transition-metal complexes for olefin polymerization. Chem Eur J 12:7546–7556. doi:10.1002/chem.200600355

    Article  CAS  Google Scholar 

  34. Wu J-Q, Pan L, Hu N-H, Li Y-S (2008) Synthesis, structural characterization and ethylene polymerization behavior of the vanadium(III) complexes bearing salicylaldiminato ligands. Organometallics 27:3840–3848. doi:10.1021/om8000097b

    Article  CAS  Google Scholar 

  35. Wu J-Q, Pan L, Liu S-R, He L-P, Li Y-S (2009) Ethylene polymerization and ethylene/hexane copolymerization with vanadium(III) catalysts bearing heteroatom-containing salicylaldiminato ligands. Polym Sci A Polym Chem 47:3573–3582. doi:10.1002/pola.23441

    Article  CAS  Google Scholar 

  36. Houghton J, Simonovic S, Whitwood AC, Douthwaite RE, Carabineiro SA, Yuan J-C, Marques MM, Gomes PT (2008) Transition-metal complexes of phenoxy-imine ligands modified with pendant imidazolium salts: synthesis, characterization and testing as ethylene polymerization catalysts. J Organomet Chem 693:717–724. doi:10.1016/j.organchem.2007.11.060

    Article  CAS  Google Scholar 

  37. Onishi Y, Katao S, Fujiki M, Nomura K (2008) Synthesis and structural analysis of (arylimido)vanadium(V) complexes containing phenoxyimine ligands: new, efficient catalyst precursors for ethylene polymerization. Organometallics 27:2590–2596. doi:10.1021/om800177g

    Article  CAS  Google Scholar 

  38. Scott MJ, Cottone A, Morales D, Lecuivre JL (2002) Synthesis and reactivity of bi-, tri-, and hexametallic and zwitterionic methyl aluminum complexes containing a phenoxide/imine ligand system. Organometallics 21:418–428. doi:10.1021/om010773b

    Article  Google Scholar 

  39. Homden D, Redshaw C, Wright JA, Hughes DL, Elsegood MRJ (2008) Early transition metal complexes bearing a C-capped tris(phenolate) ligand incorporating a pendant imine arm: synthesis, structure and ethylene polymerization behavior. Inorg Chem 47:5799–5814. doi:10.1021/ic702506w

    Article  CAS  Google Scholar 

  40. Soshnikov IE, Semikolenova NV, Bryliakov KP, Shubin AA, Zakharov VA, Redshaw C, Talsi EP (2009) An EPR study of the V(IV) species formed upon activation of a vanadyl phenoxyimine polymerization catalyst with AlR3 and AlR2Cl (R = Me, Et). Macromol Chem Phys 210:542–548. doi:10.1002/macp.200800556

    Article  CAS  Google Scholar 

  41. Wu J-G, Pan L, Li Y-G, Liu S-R, Li Y-S (2009) Synthesis, structural characterization and olefin polymerization behavior of vanadium(III) complexes bearing tridentate Schiff base ligands. Organometallics 28:1817–1825. doi:10.1021/om801028g

    Article  CAS  Google Scholar 

  42. Bialek M, Czaja K (2008) Dichlorovanadium(IV) complexes with Salen-type ligands for ethylene polymerization. Polym Sci A Polym Chem 46:6940–6949. doi:10.1002/pola.23003

    Article  CAS  Google Scholar 

  43. Wang W, Nomura K (2006) Notable effects of aluminum alkyls and solvents for highly efficient ethylene (co)polymerizations catalyzed by (arylimido)-(aryloxo)vanadium complexes. Adv Synth Catal 348:743–750. doi:10.1002/adsc.200505446

    Article  CAS  Google Scholar 

  44. Bialek M, Czaja K, Szydlo E (2009) Transition metal complexes of tetradentate and bidentate Schiff bases as catalysts for ethylene polymerization: effect of transition metal and cocatalyst. Polym Sci A Polym Chem 47:565–575. doi:10.1002/pola.23173

    Article  CAS  Google Scholar 

  45. Bialek M, Pietuszka A (2009) Ethylene(5-chlorosalicylideneiminato)vanadium dichloride immobilized on MgCl2-based supports as a highly effective precursor for ethylene polymerization. J Polym Sci A Polym Chem 47:3480–3489. doi:10.1002/pola.23426

    Article  CAS  Google Scholar 

  46. Bialek M, Liboska O (2010) Vanadium complex with tetradentate [O, N, N, O] ligand supported on magnesium type carrier for ethylene homopolymerization and copolymerization. J Polym Sci A Polym Chem 48:471–478. doi:10.1002/pola.23808

    Article  CAS  Google Scholar 

  47. Bialek M (2010) Effect of catalyst composition on chain-end-group of polyethylene produced by salen-type complexes of titanium, zirconium and vanadium. J Polym Sci A Polym Chem 48:3209–3214. doi:10.1002/pola.24096

    Article  CAS  Google Scholar 

  48. Tang L-M, Wu J-Q, Duan Y-Q, Pan L, Li Y-G, Li Y-S (2008) Ethylene polymerizations, and the copolymerizations of ethylene with hexene or norbornene with highly active mono(β-enaminoketonato) vanadium(III) catalysts. J Polym Sci A Polym Chem 46:2038–2048. doi:10.1002/pola.22538

    Article  CAS  Google Scholar 

  49. Hagen H, Bezemer C, Boersma J, Kooijman H, Lutz M, Spek AL, van Koten G (2000) Vanadium(IV) and (V) complexes with O, N-chelating aminophenolate and pyridylalkoxide ligands. Inorg Chem 39:3970–3977. doi:10.1021/ic991415s

    Article  CAS  Google Scholar 

  50. Mulhaupt R, Sernetz FG, Fokken S, Okuda J (1997) Copolymerization of ethene with styrene using methylaluminoxane-activated bis(phenolate) complexes. Macromolecules 30:1562–1569. doi:10.1021/ma961443j

    Article  Google Scholar 

  51. Schaverien CJ, Vanderlinden A, Meijboom N, Ganter C, Orpen AG (1995) Polymerization of α-olefins and butadiene and catalytic cyclotrimerization of 1-alkynes by a new class of group IV catalysts. Control of molecular weight and polymer microstructure via ligand tuning in sterically hindered chelating phenoxide titanium and zirconium species. J Am Chem Soc 117:3008–3021. doi:10.1021/ja00116a006

    Article  Google Scholar 

  52. Sobota P, Janas Z, Jerzykiewicz LB, Przybylak K, Szczegot K (2004) Titanium complexes stabilized by a sulfur-bridged chelating bis(aryloxo) ligand as active catalysts for olefin polymerization. Eur J Inorg Chem 1639–1645. doi: 10.1002/ejic.200300768

    Google Scholar 

  53. Janas Z (2010) Well-defined single-site thiobis(phenolate) Group 4 metal catalysts for heterogeneous olefin polymerization. Coord Chem Rev. doi:10.1016/j.ccr.2010.05.008

    Google Scholar 

  54. Takaoki K, Miyatake T (2000) Titanium and vanadium based non-metallocene catalysts for olefin polymerization. Macromol Symp 157:251–257. doi:10.1002/1521-3900(200007)157:1<251

    Article  CAS  Google Scholar 

  55. Janas Z, Wisniewska D, Jerzykiewicz LB, Sobota P, Drabent K, Szczegot, K. (2007) Synthesis, structural studies and reactivity of vanadium complexes with tridentate (OSO) ligand. Dalton Trans 2065–2069. doi: 10.1039/b616961a

    Google Scholar 

  56. Rajsekhar G, Rao CP, Saarenketo P, Nattinen K, Rissanen K (2004) Complexation behaviour of hexadentate ligands possessing N2O4 and N2O2S2 cores: differential reactivity towards Co(II), Ni(II) and Zn(II) salts and structures of the products. New J Chem 28:75–84. doi:10.1039/b305313j

    Article  CAS  Google Scholar 

  57. Homden DM, Redshaw C, Hughes DL (2007) Vanadium complexes possessing N2O2S2-based ligands: highly active procatalysts for the homopolymerization of ethylene and copolymerization of ethylene/1-hexene. Inorg Chem 46:10827–10839. doi:10.1021/ic701461b

    Article  CAS  Google Scholar 

  58. Hsieh ET, Randell JC (1982) Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules 15:1402–1406. doi:10.1021/ma00233a036

    Article  CAS  Google Scholar 

  59. Zhang W, Nomura K (2008) Synthesis of (1-adamantylimido)vanadium(V) complexes containing aryloxo, ketimide ligands: effect of ligand substituents in olefin insertion/metathesis polymerization. Inorg Chem 47:6482–6492. doi:10.1021/ic800347n

    Article  CAS  Google Scholar 

  60. Scheuer S, Fischer J, Kress J (1995) Synthesis, structure and olefin polymerization activity of vanadium(V) catalysts stabilized by Imido and Hydrotris(pyrazolyl)borato ligands. Organometallics 14:2627–2629. doi:10.1021/om00006a006

    Article  CAS  Google Scholar 

  61. Casagrande ACA, Tavares TT da R, Kuhn MCA, Casagrande Jr OL, dos Santos JHZ, Teranishi T (2004) Tris(pyrazolyl)borate imido vanadium(V) compound immobilzed on inorganic supports and its use in ethylene polymerization. J Mol Cat A Chem 212:267–275. doi:10.1016/j.molcata.2003.11.005

    Google Scholar 

  62. Casagrande ACA, Gil MP, Casagrande OL Jr (2005) Titanium and vanadium ethylene polymerization catalysts containing tris(pyrazolyl)borate ligand: effects of polymerization parameters on activity and polymer properties. J Braz Chem Soc 16:1283–1289. doi:10.1590/S0103-50532005000700029

    Article  CAS  Google Scholar 

  63. Bigmore HR, Zuideveld MA, Kowalczyk RM, Cowley AR, Kraenburg M, McInnes EJL, Mountford P (2006) Synthesis, structures and olefin polymerization capability of vanadium(4 +) imido compounds with fac-N3 donor ligands. Inorg Chem 45:6411–6423. doi:10.1021/ic060454i

    Article  CAS  Google Scholar 

  64. Long GS, Snedeker B, Bartosh K, Werner ML, Sen A (2001) Transition metal phthalocyanine and porphyrin complexes as catalysts for the polymerization of alkenes. Can J Chem 79:1026–1029. doi:10.1139/cjc-79-5/6-1026

    Article  CAS  Google Scholar 

  65. Zhang S, Katao S, Sun W-H, Nomura K (2009) Synthesis of (arylimido)vanadium(V) complexes containing (2-anilidomethyl)pyridine ligands and their use as the catalyst precursors for olefin polymerization. Organometallics 28:5925–5933. doi:10.1021/om900633u

    Article  CAS  Google Scholar 

  66. Zhang S, Normura K (2010) Highly efficient dimerization of ethylene by (imido)vanadium complexes containing (2-anilidomethyl)pyridine ligands: notable ligand effect toward activity and selectivity. J Am Chem Soc 132:4960–4965. doi:10.1021/ja100573d

    Article  CAS  Google Scholar 

  67. Sato Y, Nakayama Y, Yasuda H (2005) Synthesis of pentavalent imidovanadium complexes and their catalyses for the polymerization of ethylene and propylene. J Appl Polym Sci 97:1008–1015. doi:10.1002/app.21826

    Article  CAS  Google Scholar 

  68. Redshaw C, Rowan MA, Warford L, Homden DM, Arbaoui A, Elsegood MRJ, Dale SH, Yamato T, Casas CP, Matsui S, Matsuura S (2007) Oxo- and Imidovanadium complexes incorporating methylene- and dimethylene-bridged calix[3]- and –[4]arenes: synthesis, structures and ethylene polymerisation catalysis. Chem Eur J 13:1090–1107. doi:10.1002/chem.200600679

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr Simon Lancaster (UEA) is thanked for useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Redshaw, C. (2011). Imine-Based Vanadium Catalysts for α-Olefin Polymerization. In: Campora, J., Giambastiani, G. (eds) Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I. Catalysis by Metal Complexes, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3815-9_4

Download citation

Publish with us

Policies and ethics