Skip to main content

Abstract

Monocrystalline silicon is still the material of first choice for robust MEMS devices, because of its excellent mechanical strength and elasticity, and the large variety of available standard processes. Conventional RF MEMS components consist of thin-film metal structures which are prone to plastic deformation and limit the power handling. The microwave MEMS devices presented in this work utilize monocrystalline silicon as the structural material of their moving parts, and even prove that high-resistivity silicon is a good dielectric material in the W-band. A very low insertion loss, mechanically multi-stable, static zero-power consuming, laterally moving microswitch concept completely integrated in a 3D micromachined transmission line is presented. Furthermore, a multi-stage phase shifter utilizing high-resistivity monocrystalline silicon as dielectric material for the MEMS-actuated moving block loading the transmission line is shown. Finally, a tuneable high-impedance surface based on distributed MEMS capacitors with a transfer-bonded monocrystalline silicon core is presented. Prototypes of these devices were fabricated and characterization results of the microwave and their actuator performance are given.

Multi-Stable Switches, W-Band Phase Shifters, and MEMS Tuneable Frequency-Selective Surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1Except for [30] which has better performance at its nominal frequency only, but performs worse for the rest of the W-band, and is fabricated on glass substrate.

References

  1. G. T. A. Kovacs, Micromachined Transducers Sourcebook, 1st ed. New York: McGraw-Hill, 1998.

    Google Scholar 

  2. C. Liu, Foundations of MEMS. Pearson Prentice Hall, 2006.

    Google Scholar 

  3. M. J. Madou, Fundamentals of Microfabrication: the science of miniaturization, 2nd ed. Boca Raton, London, New York, Washington D.C.: CRC Press, 2002.

    Google Scholar 

  4. G. M. Rebeiz, RF MEMS Theory, Design and Technology, 1st ed. Hoboken, New Jersey: Wiley, 2003.

    Google Scholar 

  5. E. Brown, “RF-MEMS switches for reconfigurable integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1868–1880, 1998.

    Article  CAS  Google Scholar 

  6. H. D. Nguyen, D. Hah, P. R. Patterson, R. Chao, W. Piyawattanametha, E. K. Lau, and M. C. Wu, “Angular vertical comb-driven tunable capacitor with high-tuning capabilities,” IEEE Journal of Microelectromechanical Systems, vol. 13, no. 3, pp. 406–413, June 2004.

    Article  Google Scholar 

  7. H. Jiang, Y. Wang, J.-L. Yeh, and N. Tien, “On-chip spiral inductors suspended over deep copper-lined cavities,” IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 12, pp. 2415–2423, Dec. 2000.

    Article  CAS  Google Scholar 

  8. C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 251–270, Feb 2007.

    Article  Google Scholar 

  9. G. M. Rebeiz, G.-L. Tan, and J. S. Hayden, “RF MEMS phase shifters: design and applications,” IEEE Microwave Magazine, vol. 3, no. 2, pp. 72–81, June 2002.

    Article  Google Scholar 

  10. J. Papapolymerou, K. Lange, C. Goldsmith, A. Malczewski, and J. Kleber, “Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 1, pp. 271–278, Jan. 2003.

    Article  Google Scholar 

  11. B. Cetiner, J. Qian, H. Chang, M. Bachman, G. Li, and F. De Flaviis, “Monolithic integration of RF MEMS switches with a diversity antenna on PCB substrate,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 1, pp. 332–335, Jan. 2003.

    Article  Google Scholar 

  12. I. Llamas-Garro and A. Corona-Chavez, “Micromachined transmission lines for millimeter-wave applications,” in Electronics, Communications and Computers, 2006. CONIELE-COMP 2006. 16th International Conference on, 2006, pp. 15–15.

    Google Scholar 

  13. H. A. C. Tilmans, W. De Raedt, and E. Beyne, “MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’,” IOP Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. S139–S163, July 2003.

    Article  Google Scholar 

  14. J. DeNatale and R. Mihailovich, “RF MEMS reliability,” in Proc. Transducers 2003, Boston, MA, USA, June 8–12, 2003, pp. 943–946.

    Google Scholar 

  15. M. Sterner, D. Chicherin, A. V. Räisänen, G. Stemme, and J. Oberhammer, “RF MEMS high-impedance tuneable metamaterials for millimeter-wave beam steering,” in Proceedings IEEE/ASME Micro-Electro-Mechanical Sytems MEMS 2009, Sorrento, Italy, Jan. 25–29, 2009, pp. 896–899.

    Google Scholar 

  16. K. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, vol. 70, no. 5, pp. 420–457, May 1982.

    Article  CAS  Google Scholar 

  17. T. Fujita, Y. Fukumoto, F. Suzuki, and K. Maenaka, “SOI-MEMS sensor for multi-environmental sensing-system,” in Proc. IEEE Networked Sensing Systems, 2007, Braunschweig, Germany, June 6–8, 2007, pp. 146–149.

    Google Scholar 

  18. F. Niklaus, S. Haasl, and G. Stemme, “Arrays of monocrystalline silicon micromirrors fabricated using CMOS compatible transfer bonding,” IEEE Journal of Microelectrome-chanical Systems, vol. 12, no. 4, pp. 465–469, Aug. 2003.

    Article  CAS  Google Scholar 

  19. M. Sakata, Y. Komura, T. Seki, K. Kobayashi, K. Sano, and S. Horiike, “Micromachined relay which utilizes single crystal silicon electrostatic actuator,” in Proc. IEEE Micro Electro Mechanical Systems 1999, Orland, FL, USA, Jan. 17–21, 1999, pp. 21–24.

    Google Scholar 

  20. A. Weber, J. Lang, and A. Slocum, “{111} Si etched planar electrical contacts for power MEMS-relays,” in 53rd IEEE Holm Conference on Electrical contacts – 2007, Pittsburgh, PA, USA, Sept. 16–19, 2007, pp. 156–159.

    Google Scholar 

  21. C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eschelmann, Z. Yao, J. Brank, and M. Eberly, “Lifetime characterization of capacitive RF MEMS switches,” in Proc. IEEE MTT-S Int. Microwave Symposium, Phoenix, AZ, USA, May 20–25, 2001, pp. 779–808.

    Google Scholar 

  22. D. Lederer and J.-P. Raskin, “New substrate passivation method dedicated to HR SOI wafer fabrication with increased substrate resistivity,” IEEE Electron Device Letters, vol. 26, no. 11, pp. 805–807, Nov. 2005.

    Article  CAS  Google Scholar 

  23. M. Sterner, N. Roxhed, G. Stemme, and J. Oberhammer, “Coplanar-waveguide embedded mechanically-bistable DC-to-RF MEMS switches,” in IEEE/MTT-S International Microwave Symposium (IMS), Honolulu, HI, USA, June 3–8, 2007, pp. 359–362.

    Google Scholar 

  24. J. Oberhammer, M. Tang, A.-Q. Liu, and G. Stemme, “Mechanically tri-stable, true single-pole-double-throw (SPDT) switches,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2251–2258, September 2006.

    Article  Google Scholar 

  25. M. Sterner, N. Roxhed, G. Stemme, and J. Oberhammer, “Mechanically tri-stable SPDT metal-contact MEMS switch embedded in 3D transmission line,” in 37th European Microwave Conference (EuMC), Munich, Germany, Oct. 8–12, 2007, pp. 1225–1228.

    Google Scholar 

  26. J. Oberhammer and G. Stemme, “Active opening force and passive contact force electrostatic switches for soft metal contact materials,” Journal of Microelectromechanical Systems, vol. 15, no. 5, pp. 1235–1242, 2006.

    Article  Google Scholar 

  27. M. Sterner, N. Roxhed, G. Stemme, and J. Oberhammer, “Maskless selective electrochemically assisted wet etching of metal layers for 3d micromachined soi rf mems devices,” in IEEE 21st International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 2008, pp. 383–386.

    Google Scholar 

  28. N. Somjit, G. Stemme, and J. Oberhammer, “Novel concept of microwave MEMS reconfigurable 7×45° multi-stage dielectric-block phase shifters,” in Proc. IEEE/ASME Micro Electro Mechanical Systems 2009, Sorrento, Italy, Jan. 25–29, 2009, pp. 15–18.

    Google Scholar 

  29. F. Niklaus, P. Enoksson, P. Griss, E. Kälvesten, and G. Stemme, “Low-temperature wafer-level transfer bonding,” IEEE Journal of Microelectromechanical Systems, vol. 10, no. 4, pp. 525–531, 2001.

    CAS  Google Scholar 

  30. J. Hung, G. Dussopt, and M. Rebeiz, “Distributed 2- and 3-bit W-band MEMS phase shifters on glass sustrates,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 2, pp. 600–606, Feb. 2004.

    Article  Google Scholar 

  31. D. Chicherin, S. Dudorov, J. Oberhammer, M. Sterner, and A. V. Räisänen, “Microfabricated high-impedance surface for millimeter wave beam steering applications,” in Proc. of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, USA, Sept. 15–29, 2008.

    Google Scholar 

  32. D. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissertation, Dept. Elect. Eng., Univ. of California, Los Angeles, 1999.

    Google Scholar 

  33. J. Higgins, H. Xin, A. Sailer, and M. Rosker, “Ka-band waveguide phase shifter using tunable electromagnetic crystal sidewalls,” IEEE Trans. Microw. Theory and Techniques, vol. 51, no. 4, pp. 1281–1288, April 2003.

    Article  Google Scholar 

  34. D. Chicherin, S. Dudorov, D. Lioubtchenko, V. Ovchinnikov, and A. Räisänen, “Millimetre wave phase shifters based on a metal waveguide with a MEMS-based high-impedance surface,” in Proceedings of the 36th European Microwave Conference, September 2006, pp. 372–375.

    Google Scholar 

Download references

Acknowledgments

Funding for some parts of the work is provided through the NORDITE Scandinavian ICT Programme (VINNOVA, TEKES, RCN) and the European Community's Seventh Framework Programme FP7/2007–2013 under grant agreement no. 224197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Oberhammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Oberhammer, J., Sterner, M., Somjit, N. (2010). Monocrystalline-Silicon Microwave MEMS Devices. In: Gusev, E., Garfunkel, E., Dideikin, A. (eds) Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3807-4_7

Download citation

Publish with us

Policies and ethics