Skip to main content

Mean-Field Kinetic Nucleation Theory

  • Chapter
  • First Online:
Nucleation Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 860))

Abstract

On the microscopic level nucleation behavior is determined by intermolecular interactions in the substance. This is clearly demonstrated by the Density Functional Theory. Its applicability, however, is limited by relatively simple types of interactions. For the substances with highly nonsymmetric molecules the applicability of the standard DFT scheme becomes increasingly difficult. It is therefore desirable to propose a compromise between the microscopic and phenomenological descriptions. One can classify it as a semi-phenomenological approach to nucleation. It was pioneered by Dillmann and Meier [1] and developed by Ford, Laaksonen and Kulmala [2], Delale and Meier [3] and Kalikmanov and van Dongen [4]. The main idea of the semi-phenomenological approach is a combination of statistical thermodynamics of clusters with available data on the equilibrium material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that at high temperatures interactions between clusters can not be neglected.

  2. 2.

    This decomposition should not be confused with the Gibbs construction involving a dividing surface discussed in Sect.  2.2.

  3. 3.

    Note that as a thermodynamic quantity \({\fancyscript{S}}_n^\mathrm{conf }\) depends on the average number of surface molecules \(\overline{n^s}\), whereas \(U_n\) as a microscopic quantity depends on \(n^s\) itself.

  4. 4.

    Equation (7.70) is the mean-field approximation to the original WCA expression, where the cavity function of the hard sphere system is set to unity (for details see e.g. [12] Chap. 5).

  5. 5.

    Note, that the nucleation rate is very sensitive to the surface tension: if \(\gamma _\infty \) is measured within the 10 % relative accuracy (common for most of the liquid metals), the accuracy of the predicted nucleation rate for mercury lies within 4 orders of magnitude.

References

  1. A. Dillmann, G.E.A. Meier, J. Chem. Phys. 94, 3872 (1991)

    Google Scholar 

  2. I.J. Ford, A. Laaksonen, M. Kulmala, J. Chem. Phys. 99, 764 (1993)

    Google Scholar 

  3. C.F. Delale, G.E.A. Meier, J. Chem. Phys. 98, 9850 (1993)

    Google Scholar 

  4. V.I. Kalikmanov, M.E.H. van Dongen, J. Chem. Phys. 103, 4250 (1995)

    Google Scholar 

  5. M.E. Fisher, Physics 3, 255 (1967)

    Google Scholar 

  6. V.I. Kalikmanov, J. Chem. Phys. 124, 124505 (2006)

    Google Scholar 

  7. F.H. Stillinger, J. Chem. Phys. 38, 1486 (1963)

    Google Scholar 

  8. J.K. Lee, J.A. Baker, F.F. Abraham, J. Chem. Phys. 58, 3166 (1973)

    Google Scholar 

  9. D.I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994)

    Google Scholar 

  10. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena (Clarendon Press, Oxford, 1995)

    Google Scholar 

  11. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th edn. (McGraw-Hill, New York, 1987)

    Google Scholar 

  12. V.I. Kalikmanov, Statistical Physics of Fluids. Basic Concepts and Applications(Springer, Berlin, 2001)

    Google Scholar 

  13. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982)

    Google Scholar 

  14. J.R. Cahoon, Can. J. Phys. 82, 291 (2004)

    Google Scholar 

  15. J. Wölk, R. Strey, J. Phys. Chem. B 105, 11683 (2001)

    Google Scholar 

  16. P. Peeters, J.J.H. Giels, M.E.H. van Dongen, J. Chem. Phys. 117, 5467 (2002)

    Google Scholar 

  17. D.G. Labetski, V. Holten, M.E.H. van Dongen, J. Chem. Phys. 120, 6314 (2004)

    Google Scholar 

  18. D. Brus, V. Ždimal, J. Smolik, J. Chem. Phys. 129, 174501 (2008)

    Google Scholar 

  19. K. Iland, Ph.D. Thesis, University of Cologne, 2004

    Google Scholar 

  20. F. Hensel, Phil. Trans. R. Soc. London A 356, 97 (1998)

    Google Scholar 

  21. K. Rademann, Z. Phys, D 19, 161 (1991)

    Google Scholar 

  22. P.P. Singh, Phys. Rev. B 49, 4954 (1994)

    Google Scholar 

  23. G.M. Pastor, P. Stampfli, K.H. Benemann, Phys. Scr. 38, 623 (1988)

    Google Scholar 

  24. G. Moyano et al., Phys. Rev. Lett. 89, 103401 (2002)

    Google Scholar 

  25. J. Martens, H. Uchtmann, F. Hensel, J. Phys. Chem. 91, 2489 (1987)

    Google Scholar 

  26. D. Frenkel, B. Smit, Understanding Molecular Simulaton (Academic Press, London, 1996)

    Google Scholar 

  27. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Google Scholar 

  28. A.H. Falls, L.E. Scriven, H.T. Davis, J. Chem. Phys. 75, 3986 (1981)

    Google Scholar 

  29. V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 99, 2865 (1995)

    Google Scholar 

  30. K. Koga, X.C. Zeng, A.K. Schekin, J. Chem. Phys. 109, 4063 (1998)

    Google Scholar 

  31. U. Gedde, Polymer Physics (Chapman & Hall, London, 1995)

    Google Scholar 

  32. D.I. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kalikmanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalikmanov, V.I. (2013). Mean-Field Kinetic Nucleation Theory. In: Nucleation Theory. Lecture Notes in Physics, vol 860. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3643-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3643-8_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3642-1

  • Online ISBN: 978-90-481-3643-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics