Skip to main content

Metabolic and Co-metabolic Degradation of Industrially Important Chlorinated Organics Under Aerobic Conditions

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

Chlorinated organic compounds are the frequently detected xenobiotics in industrial effluents. They may enter surface water, groundwater and soil systems. Examples are presented on the level of these compounds in aquatic systems. The chapter then addresses the biological removal of these compounds by aerobicmetabolism in which the substrate is used as an energy and carbon source. However, the major part of chlorinated organic compounds is resistant to metabolic removal. Yet, some can effectively be removed through aerobic co-metabolism in bioremediation of polluted groundwater and soil and in wastewater treatment systems. In aerobic co-metabolic removal of these compounds different types of substrates can be used as primary growth-substrates such as phenol, toluene, propane, methane, ammonia and others which are extensively reviewed in this chapter. The basic features of natural and enhanced bioremediation are also outlined in the chapter. The aerobic co-metabolism is exploited mainly for bioremediation of chlorinated aliphatic compounds such as trichloroethylene (TCE) in groundwater and in some cases for chlorinated benzenes and phenols. Examples of field-, pilot- and laboratory studies are documented which deal with aerobic co-metabolic removal of chlorinated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaens, P., & Focht, D. D. (1991). Cometabolism of 3,4-dichlorobenzoate by Acitenobacter sp. strain 4-CB1. Applied and Environmental Microbiology, 57, 173–179.

    Google Scholar 

  • Ahmed, M., & Focht, D. D. (1973). Degradation of polychlorinated biphenyl by two species of Achromobacter. Canadian Journal of Microbiology, 19, 47–52.

    Article  CAS  Google Scholar 

  • Aktaş, Ö., & Çeçen, F. (2007). Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon. Journal of Hazardous Materials, 141, 769–777.

    Article  CAS  Google Scholar 

  • Aktaş, Ö., & Çeçen, F. (2009). Cometabolic bioregeneration of activated carbons loaded with 2-chlorophenol. Bioresource Technology, 100, 4604–4610.

    Google Scholar 

  • Aktaş, Ö. (2006). Bioregeneration of activated carbon in the treatment of phenolic Compounds. Ph.D. Thesis, Bogaziçi University, Institute of Environmental Sciences.

    Google Scholar 

  • Alpaslan Kocamemi, B. (2005). Cometabolic degradation of trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA) in nitrification systems. Ph.D. Thesis, Bogazici University, Institute of Environmental Sciences.

    Google Scholar 

  • Alpaslan Kocamemi, B., & Çeçen, F. (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260–265.

    Article  CAS  Google Scholar 

  • Alpaslan Kocamemi, B., & Çeçen, F. (2007a). Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation, 18, 71–81.

    Article  CAS  Google Scholar 

  • Alpaslan Kocamemi, B., & Çeçen, F. (2007b). Inhibitory effect of the xenobiotic 1, 2-DCA in a nitrifying biofilm reactor. Water Science and Technology, 55, 67–73.

    Article  CAS  Google Scholar 

  • Alvarez-Cohen, L., & Speitel, G. E., Jr. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105–126.

    Article  CAS  Google Scholar 

  • Arciero, D., Vannelli, T., Logan, M., & Hooper, A. B. (1989). Degradation of trichloroethylene by ammonia-oxidizing bacterium Nitrosomonas europaea. Biochemistry and Biophysical Research Communications, 159, 640–643.

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry (Atlanta, Georgia, USA)). (2008) Retrieved November 5, 2008. From http://www.atsdr.cdc.gov/toxpro2.html.

  • Bae, B., Autenrieth, R. L., & Bonner, J. S. (1995). Kinetics of multiple phenolic-compounds degradation with a mixed culture in a continuous-flow reactor. Water Environment Research, 67, 215–223.

    Article  CAS  Google Scholar 

  • Basu, S. K., & Oleszkiewicz, J. A. (1995). Factors affecting aerobic biodegradation of 2-chlorophenol in sequencing batch reactors. Environmental Technology, 16, 1135–1143.

    Article  CAS  Google Scholar 

  • Bradley, P. M. (2003). History and ecology of chloroethene biodegradation: A review. Bioremediation Journal, 7, 81–109.

    Article  CAS  Google Scholar 

  • Buitron, G., Gonzales, A., & Lopez-Marin, L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology, 37, 371–378.

    Article  CAS  Google Scholar 

  • Byl, T. D., & Williams, S. D. (2000). Biodegradation of chlorinated ethenes at a karst site in Middle Tennessee. U.S. Geolological Survey, Water-Resources Investigations Report 99–4285. Nashville, Tennessee.

    Google Scholar 

  • Chang, H., & Alvarez-Cohen, L. (1995a). Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnology and Bioengineering, 45, 440–449.

    Article  CAS  Google Scholar 

  • Chang, H., & Alvarez-Cohen, L. (1995b). Model for the cometabolic biodegradation of chlorinated organics. Environmental Science and Technology, 29, 2357–2367.

    Article  CAS  Google Scholar 

  • Chang, H., & Alvarez-Cohen, L. (1996). Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Applied and Environmental Microbiology, 62, 3371–3377.

    CAS  Google Scholar 

  • Chaundry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79.

    Google Scholar 

  • Chiavola, A., Baciocchi, R., Irvine, R. L., Gavasci, R., & Sirini, P. (2004). Aerobic biodegradation of 3-chlorophenol in a sequencing batch reactor: effect of cometabolism. Water Science and Technology, 50, 235–242.

    CAS  Google Scholar 

  • Corbella, M. E., Garrido-Pertierra, A., & Puyet, A. (2001). Induction of the halobenzoate catabolic pathway and cometabolism of ortho-chlorobenzoates in Pseudomonas aeruginosa 142 grown on glucose-supplemented media. Biodegradation, 12, 149–157.

    Article  CAS  Google Scholar 

  • De Los Cobos-Vasconcelos, D., Santoyo-Tepole, F., Juarez-Ramirez, C., Ruiz-Ordaz, N., & Galindez-Mayer, C. J. J. (2006). Cometabolic degradation of chlorophenols by a strain of burkholderia in fed batch culture. Enzyme and Microbial Technology, 40, 57–60.

    Article  CAS  Google Scholar 

  • Dermietzel, J., & Vieth, A. (2002). Chloroaromatics in groundwater: Chances of bioremediation. Environmental Geology, 41, 683–689.

    Article  CAS  Google Scholar 

  • Dominguez, R. F., da Silva, M. L. B., McGuire, T. M., Adamsaon, D., Newell, C. J., & Alvarez, P. J. J. (2008). Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation, 19, 545–553.

    Article  CAS  Google Scholar 

  • Dyer, M., Van Heiningen, E., & Gerritse, J. (2000). In situ bioremediation of 1, 2-dichloroethane under anaerobic conditions. Geotechnical and Geological Engineering, 18, 313–334.

    Article  Google Scholar 

  • Ely, R. L., Hyman, M. R., Arp, D. J., Guenther, R. B., & Williamson, K. J. (1995). A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: II Trichloroethylene degradation experiments. Biotechnology and Bioengineering, 46, 232–245.

    Article  CAS  Google Scholar 

  • Ely, R. L., Williamson, K. J., Hyman, M. R., & Arp, D. J. (1997). Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate, interactions, toxicity effects, and bacterial response. Biotechnology and Bioengineering, 54, 520–534.

    Article  CAS  Google Scholar 

  • EPA. (2000). Engineered approaches to in-situ bioremediation of chlorinated solvents: Fundamentals and field applications. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC.

    Google Scholar 

  • Ettala, M., Koskela, J., & Kiesila, A. (1992). Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. Water Research, 26(6), 797–804.

    Article  CAS  Google Scholar 

  • Fahmy, M., Kut, O. M., & Heinzle, E. (1994). Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents - II. Fate of individual chlorophenolic compounds. Water Research, 28(9), 1997–2010.

    Article  CAS  Google Scholar 

  • Farabegoli, G., Chiavola, Z., & Rolle, E. (2008). Remediation of chlorophenol and phenol contaminated groundwater by a sequencing batch biofilm reactor. Water Science and Technology, 58, 295–301.

    Article  CAS  Google Scholar 

  • Feidieker, D., Kampfer, P., & Dott, W. (1995). Field-scale investigations on the biodegradation of chlorinated aromatic compounds and HCH in the subsurface environment. Journal of Contaminant Hydrology, 19(2), 145–169.

    Article  CAS  Google Scholar 

  • Field, J. A., & Sierra-Alvarez, R. (2004). Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Bio/Technology, 3, 185–254.

    Article  CAS  Google Scholar 

  • Hyman, M. R., Russell, S. A., Ely, R. L., Williamson, K. J., & Arp, D. J. (1995). Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Applied and Environmental Microbiology, 61(4), 1480–1487.

    CAS  Google Scholar 

  • ICSS. (Ed.) (2006). Manual for biological remediation techniques. Materialien zur Altlastenbehandlung Nr. 1/2000. Mikrobiologische Sanierungsverfahren Sächsisches Landesamt für Umwelt und Geologie, Dresden.

    Google Scholar 

  • Iwasaki, T., Miyauchi, K., Masai, E., & Fukuda, M. (2006). Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp strain RHA1. Applied and Environmental Microbiology, 72, 5396–5402.

    Article  CAS  Google Scholar 

  • Jechorek, M., Wendlandt, K. D., & Beck, M. (2003). Cometabolic degradation of chlorinated aromatic compounds. Journal of Biotechnology, 102, 93–98.

    Article  CAS  Google Scholar 

  • Kao, C. M., & Prosser, J. (1999). Intrinsic bioremediation of trichloroethylene and chlorobenzene: Filed and laboratory studies. Journal of Hazardous Materials, 69, 67–79.

    Article  CAS  Google Scholar 

  • Kim, M. H., & Hao, O. J. (1999). Cometabolic degradation of chlorophenols by Acinetobacter species. Water Research, 33(2), 562–574.

    Article  CAS  Google Scholar 

  • Kim, Y., Istaok, J. D., & Semprini, L. (2004). Push-pull tests for assessing in situ aerobic cometabolism. Ground Water, 42(2), 229–237.

    Google Scholar 

  • Kim, Y., Semprini, L., & Arp, D. J. (1997). Aerobic cometabolism of chloroform and 1, 1, 1-trichloroethane by butane-grown microorganisms. Bioremediation Journal, 1(2), 135–148.

    Article  CAS  Google Scholar 

  • Kohler, H.-P. E., Kohler-Staub, D., & Focht, D. D. (1988). Cometabolism of polychlorinated biphenyls: Enhanced transformation of Aroclor 1254 by growing bacterial cells. Applied and Environmental Microbiology, 54(8), 1940–1945.

    CAS  Google Scholar 

  • Kuo, M. T., Chen, C. M., Lin, C. H., Fang, H. C., & Lee, C. H. (2000). Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bulletin of Environmental Contamination and Toxicology, 65(5), 654–659.

    Article  CAS  Google Scholar 

  • Lewandowski, B. B., & Varuntanya, C. P. (1988). The use of pure cultures as a means of understanding the performance of mixed cultures in biodegradation of phenolics. In R. J. Scholze, E. D. Smith & J. T. Bandy (Eds.), Biotechnology for degradation of toxic chemicals in hazardous wastes (pp. 292–315). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Li, Y., & Loh, K. C. (2005). Cometabolic transformation of high concentrations of 4-chlorophenol in an immobilized cell hollow fiber membrane bioreactor. Journal of Environmental Engineering, 131, 1285–1292.

    Article  CAS  Google Scholar 

  • Liu, D., Maguire, R. J., Pacepavicius, B., & Dutka, B. J. (2006). Biodegradation of recalcitrant chlorophenols by cometabolism. Environmental Toxicology and Water Quality, 6, 85–95.

    CAS  Google Scholar 

  • Loh, K. C., & Wu, T. T. (2006). Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Canadian Journal of Chemical Engineering, 84, 356–367.

    Article  CAS  Google Scholar 

  • Lorbeer, H., Starke, S., Gozan, M., Tiehm, A., & Werner, P. (2002). Bioremediation of chlorobenzene-contaminated groundwater on granular activated carbon barriers. Water, Air, and Soil Pollution: Focus, 2, 183–193.

    Article  CAS  Google Scholar 

  • McCarty, P. L. (2000). Novel biological removal of hazradous chemicals at trace levels. Water Science and Technology, 42, 49–60.

    CAS  Google Scholar 

  • McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T., et al. (1998). Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environmental Science and Technology, 32, 88–100.

    Article  CAS  Google Scholar 

  • Oldenhius, R., Vink, R. L. J. M., Janssen, D. B., & Witholt, B. (1989). Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology, 55, 2819–2826.

    Google Scholar 

  • Puhakka, J. A., Shieh, W. K., Jaervinen, K., & Melin, E. (1992). Chlorophenol degradation under oxic and anoxic conditions. Water Science and Technology, 25, 147–152.

    CAS  Google Scholar 

  • Quan, X., Yang, Z., Shi, H., Tang, Q., & Qian, Y. (2005). The effect of a secondary chlorophenol presence on the removal of 2, 4-dichlorophenol (2, 4-DCP) in an activated sludge system bioaugmented with 2, 4-DCP degrading culture. Process Biochemistry, 40, 3462–3467.

    Article  CAS  Google Scholar 

  • Rasche, M. E., Hyman, M. R., & Arp, D. J. (1991). Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity. Applied and Environmental Microbiology, 57, 2986–2994.

    CAS  Google Scholar 

  • Sabel, G. V., & Clark, T. P. (1984). Volatile organic compounds as indicators of municipal solid waste leachate contamination. Waste Management and Research, 2, 119–130.

    CAS  Google Scholar 

  • Şahinkaya, E., & Dilek, F. B. (2005). Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-evaluation of biokinetic coefficients. Environmental Research, 99, 243–252.

    Article  CAS  Google Scholar 

  • Salmeron-Alcocer, A., Ruiz-Ordaz, N., Juarez-Ramirez, C., & Galindez-Mayer, J. (2007). Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp. Microbacterium phyllosphaerae and Candida tropicalis. Biochemical Engineering Journal, 37, 201–211.

    Article  CAS  Google Scholar 

  • Saul, M.T. (2000). Aerobic cometabolism of halogenated aliphatic hydrocarbons: a technology overview. In Remediation Journal, 11, (pp. 29–36).

    Google Scholar 

  • Schmidt, K. R., & Tiehm, A. (2008). Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Science and Technology, 58, 1137–1145.

    Article  CAS  Google Scholar 

  • Semprini, L., Roberts, P. V., & Hopkins, G. D. (1990). A field evaluation of in-situ biodegradation of chlorinated ethenes: results of biostimulation and biotransformation experiments. Ground Water, 28, 715–727.

    Article  CAS  Google Scholar 

  • Spain, J. (1997). Future vision: Compounds with potential for natural attenuation. In Proceedings of the Symposium on natural attenuation of chlorinated organics in groundwater (pp. 137–141). EPA/540/R-97/504.

    Google Scholar 

  • Speitel, G. E., & Segar, R. L. (1995). Cometabolism in biofilm reactors. Water Science and Technology, 31, 215–225.

    Article  CAS  Google Scholar 

  • Staps, S., van Eekert, M., van Heiningen, E., Borger, A., Rijnaarts, H., Hetterschijt, R., et al. (1999). Biodegradation of chloroethenes and chlorobenzenes in a two-phase anaerobic/microaerobic treatment zone system. In H. Weiss, H. Rijnaarts, S. Staps, & P. Merkel (Eds.), Safira (SAnierungsForschung in Regional kontaminierten Aquiferen) - Abstracts of the Workshop of November 17–18, 1999 at Bitterfeld Germany, The Helmholtz Centre for Environmental Research (UFZ), Report No. 23/2000 (0948–9452) (pp. 26–40).

    Google Scholar 

  • Takase, I., Omori, T., & Minoda, Y. (1986). Microbial degradation products from biphenyl-related compounds. Agricultural Biology and Chemistry, 50, 681–686.

    CAS  Google Scholar 

  • Tiehm, A., Schulze, S., Böckle, K., Müller, A., Lorbeer, H., & Werner, P. (2000). Elimination of chloroorganics in a reactive wall system by biodegradation on activated carbon. In Proceedings of the Seventh International FZK/TNO Conference on Contaminated Soil (pp. 924–931). 18–22 September 2000, Leipzig, Germany.

    Google Scholar 

  • Unell, M., Norddin, K., Jernberg, C., Stenström, J., & Jansson, J. K. (2008). Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation, 19, 495–505.

    Article  CAS  Google Scholar 

  • Vannelli, T., Logan, M., Arciero, D. M., & Hooper, A. B. (1990). Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Applied Environmental Microbiology, 56, 1169–1171.

    CAS  Google Scholar 

  • Wang, S. J., & Loh, K. C. (1999). Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation, 10, 261–269.

    Article  CAS  Google Scholar 

  • Ward, C. H., Cherry, J. A., & Scalf, M. R. (1997). Subsurface restoration. Chelsea, MI: Ann Arbor Press.

    Google Scholar 

  • Wünsche, L., Lorbeer, H., Vogt, C., Seifert, K., Jorks, S., Hard, B. C., & Babel, W. (1999). Microbial colonization of the subsurface at the test site and degradation of chlorobenzenes by autochthonous bacteria of the quarternary aquifer. In H. Weiss, H. Rijnaarts, S. Staps, & P. Merkel (Eds.), Safira (SAnierungsForschung In Regional kontaminierten Aquiferen) - Abstracts of the Workshop of November 17–18, 1999 at Bitterfeld Germany, The Helmholtz Centre for Environmental Research (UFZ), Report No. 23/2000 (0948–9452) (pp. 13–25).

    Google Scholar 

  • Wymore, R. A., Lee, M. H., Keener, W. K., Miller, S. C., Colwell, F. S., Watwood, M. E., et al. (2007). Field evidence for intrinsic aerobic chlorinated ethane cometabolism by methanotrophs expressing soluble methane monoxygenase. Bioremediation Journal, 11, 125–139.

    Article  CAS  Google Scholar 

  • Yeager, C. M., Arthur, K. M., Bottomley, P. J., & Arp, D. J. (2004). Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation, 15, 19–28.

    Article  CAS  Google Scholar 

  • Ziagova, M., & Liakopoulou-Kyriakides, M. (2007a). Kinetics of 2, 4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp cultures in the presence of glucose. Chemosphere, 68, 921–927.

    Article  CAS  Google Scholar 

  • Ziagova, M., & Liakopoulou-Kyriakides, M. (2007b). Comparison of cometabolic degradation of 1, 2-dichlorobenzene by Pseudomonas sp and Staphylococcus xylosus. Enzyme and Microbial Technology, 40, 1244–1250.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhan Çeçen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Çeçen, F., Kocamemi, B.A., Aktaş, Ö. (2010). Metabolic and Co-metabolic Degradation of Industrially Important Chlorinated Organics Under Aerobic Conditions. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_9

Download citation

Publish with us

Policies and ethics