Skip to main content

Membrane BioReactors: A Cost-Effective Solution to Enhance the Removal of Xenobiotics from Urban Wastewaters?

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

Abstract

Membrane bioreactor is no longer just a promising technology. Full scale applications in urban wastewater treatment plants are rapidly growing in number and in terms of treatment capacity. This modification of the conventional activated sludge process may enhance the removal of xenobiotics for two main reasons: (1) the effluent (permeate) is virtually free from suspended solids and associated pollutants; (2) there is a major flexibility for the operation of the biological process, which is distinguished from the sedimentation properties of the activated sludge. This chapter deals with the removal of xenobiotics from real urban wastewater showing and discussing a 10-year activity carried out in Italy on pilot, demonstration and full scale membrane bioreactors. Target xenobiotics were metals (As, Cd, Cr, Hg, Ni, Pb), industrial organic chemicals and products, such as PAHs, BTEXs, PCBs, PCDDs/PCDFs, etc. As far as metals are concerned, besides Cd and Hg, which were almost completely removed both in conventional and membrane systems, generally the enhanced biosorption and/or retention capability allowed the membrane bioreactor to be more effective than the conventional activated sludge systems in removal of Cr, Cu and Ni. High sludge age seemed to enhance the bioconversion of hydrophobic and partially recalcitrant substances such as dioxins, hexachlorobenzene and poly-chlorinated bi-phenyls. As for the power requirements of the membrane bioreactors, which still represent a bottleneck for the widespread urban application of the technology, full scale data demonstrated were close to sustainable values, especially when membrane filtration is coupled to energy-saving biological processes such as the intermittent and automatically controlled aeration. Moreover, although a significant decrease is being observed for investment costs, land cost still represents a real major driver for membrane bioreactors urban implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Battistoni, P., & Chemitec. (1999). Metodo e dispositivo di controllo di un processo di trattamento biologico, a cicli alternati, di acque reflue. Italian Patent N° RM99A0000182.6.99.

    Google Scholar 

  • Battistoni, P., De Angelis, A., Boccadoro, R., & Bolzonella, D. (2003). An automatically controlled alternate oxic-anoxic process for small municipal wastewater treatment plants. Industrial & Engineering Chemistry Research, 42(3), 509-515.

    Article  CAS  Google Scholar 

  • Battistoni, P., Fatone, F., Bolzonella, D., & Pavan, P. (2006). Full scale application of the coupled alternate cycles-membrane bioreactor (ACMBR) process for wastewater reclamation and reuse. Water Practice and Technology, 1(4) on-line journal doi: 10.2166/WPT.2006077.

    Google Scholar 

  • Battistoni, P., Fatone, F., Passacantando, D., & Bolzonella, D. (2007). Application of food waste disposers and alternate cycles process in small-decentralized towns: A case study. Water Research, 41, 893-903.

    Article  CAS  Google Scholar 

  • Battistoni, E. M., Fatone, F., Pavan, P., Beltritti, R., & Raviola, M. (2008). Process control automation and remote on-line supervision: The strategy for wastewater treatment in an Italian piedmont. Water Science and Technology, 57(10), 1571-1577.

    Article  CAS  Google Scholar 

  • Battistoni, P., Fava, G., & Ruello, M. L. (1993). Heavy metal shock load in activated sludge uptake and toxic effects. Water Research, 27, 821-827.

    Article  CAS  Google Scholar 

  • Brown, M. J., & Lester, J. N. (1979). Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Research, 13, 817-837.

    Article  CAS  Google Scholar 

  • Brown, M. J., & Lester, J. N. (1982). Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge. I. Effects of metal concentration. Water Research, 16(11), 1539-1548.

    Article  CAS  Google Scholar 

  • Byrns, G. (2001). The fate of xenobiotic organic compounds in wastewater treatment plants. Water Research, 35(10), 2523-2533.

    Article  CAS  Google Scholar 

  • Carrer, S., & Leardi, R. (2006). Characterizing the pollution produced by an industrial area: Chemometric methods applied to the Lagoon of Venice. Science of the Total Environment, 370(1), 99-116.

    Google Scholar 

  • Cattaneo, S., Marciano, F., Masotti, L., Vecchiato, G., Verlicchi, P., & Zaffaroni, C. (2008). Improvement in the removal of micropollutants at Porto Marghera industrial wastewaters treatment plant by MBR technology. Water Science and Technology, 58(9), 1789-1796.

    Article  CAS  Google Scholar 

  • Cecchi, F., Innocenti, L., Bolzonella, D., & Pavan, P. (2003). Membrane bioreactor processes: A must for the wastewater treatment plants of the lagoon of Venice. Annali di Chimica, 93, 381-388.

    CAS  Google Scholar 

  • Chang, I. S., & Judd, S. J. (2003). Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging. Water Science and Technology, 47(12), 149-154.

    CAS  Google Scholar 

  • Chapman, S., Leslie, G., & Law, I. (2003). Membrane Bioreactors (MBR) for municipal wastewater treatment - An Australian perspective. Paper presented at the Australian Water Association Annual Conference, Perth, Australia.

    Google Scholar 

  • Charpentier, J., Florenz, M., & David, G. (1987). Oxidation-reduction potential (ORP) regulation: A way to optimize pollution removal and energy savings in low load activated sludge process. Water Science and Technology, 19, 645-655.

    CAS  Google Scholar 

  • Cicek, N., Macomer, J., Davel, J., Suidan, M. T., Audic, J., & Genestet, P. (2001). Effect of solids retention time on the performances and biological characteristics of a membrane bioreactor. Water Science and Technology, 43(11), 43-50.

    CAS  Google Scholar 

  • Cirja, M., Ivashechkin, P., Schaffer, A., & Corvini, P. F. X. (2008). Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Reviews in Environmental Science and Biotechnology, 7, 61-78.

    Google Scholar 

  • Clara, M., Kreuzinger, N., Strenn, B., Gans, O., & Kroiss, H. (2005). The solids retention time - A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research, 39, 97-106.

    Article  CAS  Google Scholar 

  • Comte, S., Guibaud, G., & Baudu, M. (2006). Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochemistry, 41, 815-823.

    Article  CAS  Google Scholar 

  • Cotè, P., Masini, M., & Mourato, D. (2004). Comparison of membrane options for water reuse and reclamation. Desalination, 167, 1-11.

    Article  Google Scholar 

  • Daigger, G. T., Crawford, G. V., & Lozier, J. C. (2004). Membrane bioreactor practices and appli­cations in North America. Paper presented at WEFTEC 04 Workshop 108, New Orleans, LA.

    Google Scholar 

  • Engelhardt, N., & Linder, W. (2006). Experiences with the world’s largest municipal waste water treatment plant using membrane technology. Paper presented at the 5th IWA World Water Congress, Beijing, China, September 10-14, 2006.

    Google Scholar 

  • Evenblij, H. (2006). Filtration characteristics in membrane bioreactors. Ph.D. Thesis, Delft Technical Univesity, Delft, The Netherlands.

    Google Scholar 

  • Fatone, F. (2007). Advanced wastewater treatment by membrane bioreactors operating the alternate cycles process. Ph.D. Thesis, University of Verona, Verona, Italy.

    Google Scholar 

  • Fatone, F., Battistoni, P., Bolzonella, D., Pavan, P., & Cecchi, F. (2008a). Long-term experience with an automatic process control for nitrogen removal in membrane bioreactors. Desalination, 227(1-3), 72-84.

    Google Scholar 

  • Fatone, F., Battistoni, P., Pavan, P., & Cecchi, F. (2006). Application of a membrane bioreactor for the treatment of low loaded wastewater for water re-use. Water Science and Technology, 53(9), 111-121.

    Article  CAS  Google Scholar 

  • Fatone, F., Battistoni, P., Pavan, P., & Cecchi, F. (2007). Operation and maintenance of full-scale municipal membrane biological reactors: A detailed overview on a case study. Industrial & Engineering Chemistry Research, 46, 6688-6695.

    Article  CAS  Google Scholar 

  • Fatone, F., Bolzonella, D., Battistoni, P., & Cecchi, F. (2005). Removal of nutrients and micropollutants treating low loaded wastewaters in a membrane bioreactor operating the automatic alternate-cycles process. Desalination, 183, 395-405.

    Google Scholar 

  • Fatone, F., Eusebi, A. L., Pavan, P., & Battistoni, P. (2008b). Exploring the potential of membrane bioreactors to enhance metals removal from wastewater: Pilot experiences. Water Science and Technology, 57(4), 505-511.

    Google Scholar 

  • Frechen, F. B., Schier, W., & Linden, C. (2007, May). Pre-treatment of municipal MBR applications. Paper presented at the 4th IWA Specialized Conference on Water and Membranes, Harrogate, UK.

    Google Scholar 

  • Germain, E., Nelles, F., Drews, A., Pearce, P., Kraume, M., Reid, E., et al. (2007). Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 41(5), 1038-1044.

    Google Scholar 

  • Gnirss, R., Carsten Luedicke, C., Vocks, M., & Lesjean, B. (2008). Design criteria for semi-central sanitation with low pressure network and membrane bioreactor-the ENREM project. Water Science and Technology, 57(3), 403-410.

    Article  CAS  Google Scholar 

  • Holakoo, L., Nakhla, G., Yanful, E. K., & Bassi, A. S. (2006). Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor. Water Research, 40(8), 1531-1538.

    Article  CAS  Google Scholar 

  • Innocenti, L., Bolzonella, D., Pavan, P., & Cecchi, F. (2002). Effect of sludge age on the performance of a membrane bioreactor: Influence on nutrients and metals removal. Desalination, 146, 467-474.

    Article  CAS  Google Scholar 

  • Joss, A., Keller, E., Alder, A. C., Göbel, A., McArdell, C. S., Ternes, T., et al. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39(14), 3139-3152.

    Google Scholar 

  • Joss, A., Siegrist, H., & Ternes, T. A. (2008). Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Science and Technology, 57(2), 251-255.

    Article  CAS  Google Scholar 

  • Judd, S. (2006). The MBR book: Principle and applications of membrane bioreactors in water and wastewater treatment. Oxford: Elsevier.

    Google Scholar 

  • Lau, S. L., & Stenstrom, M. K. (2005). Metals and PAHs adsorbed to street particles. Water Research, 39(17), 4083-4092.

    Article  CAS  Google Scholar 

  • Le-Clech, P., Chen, V., & Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1-2), 17-53.

    Google Scholar 

  • Le-Clech, P., Fane, A., Leslie, G., & Childress, A. (2005). MBR focus: The operators’ perspective. Filtration & Separation, 42(5), 20-23.

    Article  Google Scholar 

  • Liang, S., Liu, C. & Song, L. (2007). Soluble microbial products in membrance bioreactor operation: behaviours, characteristics, and fouling potential. Water Research, 41, 95-101.

    Google Scholar 

  • Metcalf and Eddy Inc. (2003). Wastewater engineering: Treatment and reuse (4th international ed.). New York: McGraw-Hill.

    Article  Google Scholar 

  • Montagnoli, T. (2006, November). L’esperienza di Brescia. Depurazione e riutilizzo: Analisi dei costi e benefici (in Italian). Presented at giornata di studio “Acqua: Risorsa strategica per l’agricoltura”, Genova, Italy.

    Google Scholar 

  • Pirbazari, M., Ravindran, V. M., Badriyha, B., & Kim, S. H. (1996). Hybrid membrane filtration process for leachate treatment. Water Research, 30(11), 2691-2706.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., et al. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072.

    Google Scholar 

  • Vegliò, F., & Beolchini, F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy, 44, 301-316.

    Article  Google Scholar 

  • Villar, P., Callejon, M., Alonso, E., Jiménez, J. C., & Guiraùm, A. (2006). Temporal evolution of polycyclic aromatic hydrocarbons (PAHs) in sludge from wastewater treatment plants: Comparison between PAHs and heavy metals. Chemosphere, 64(4), 535-541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The activities hereby discussed were carried out by the University of Verona, University of Venice “Cà Foscari” and the Marche Polytechnic University. The main participants, Prof. Franco Cecchi, Dr. David Bolzonella, Prof. Paolo Pavan, Prof. Paolo Battistoni, and their research groups are kindly acknowledged. Moreover, the author gratefully thanks: the engineering firm Ingegneria Ambiente Srl for supplying the design details of the Viareggio full scale MBR; the Municipality of Treviso, VERITAS SpA and SEA Acque SpA for hosting the experimental facilities and for the important practical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fatone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fatone, F. (2010). Membrane BioReactors: A Cost-Effective Solution to Enhance the Removal of Xenobiotics from Urban Wastewaters?. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_18

Download citation

Publish with us

Policies and ethics