Skip to main content

Efficiency of Removal of Compounds with Estrogenic Activity During Wastewater Treatment: Effects of Various Removal Techniques

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Part of the book series: Environmental Pollution ((EPOL,volume 16))

  • 1692 Accesses

Abstract

The effluents from wastewater treatment plants are known to contribute significantly to the total emission of estrogenic compounds, both from natural and anthropogenic sources, into the aquatic environment. As a logical consequence, occurrence of these compounds affects the quality of our surface waters in general, while they may be able to interfere with aquatic wildlife through endocrine disruption.

In a comprehensive monitoring programme, the removal of natural estrogenic hormones, bisphenol A, nonylphenol and nonylphenol ethoxylates was investigated for a number of Dutch wastewater treatment plants. For quantification of these contaminants at very low levels (low ng/L for the hormones and bisphenol A, low μg/L for nonylphenol and its ethoxylates), both GC-MS and LC-MS techniques were applied. In addition, overall estrogenic activity in samples taken from various steps in the treatment cycle was determined by application of the ER-CALUX assay.

Apart from a standard approach for wastewater treatment, several additional treatment techniques, that is sand filtration, active coal filtration, membrane bioreactors (in series and stand-alone) were investigated as well.

None of the treatment techniques was able to remove all of the estrogenic activity. In the sewage treatment plant effluents, only estrone, bisphenol A, nonylphenol and nonylphenol ethoxylates were regularly detected, while 17β-estradiol was measured incidentally. In general, implementation of most additional treatment techniques further reduced the estrogenic activity to levels below 1 ng EEQ/L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belfroid, A. C., van der Horst, A., Vethaak, A. D., Schäfer, A. J., Rijs, G. B. J., Wegener, J., et al. (1999). Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. Science of the Total Environment, 225, 101-108.

    Article  CAS  Google Scholar 

  • Blair, R. M., Fang, H., Branham, W. S., Hass, B. S., Dial, S. L., Moland, C. L., et al. (2000). The estrogen receptor relative binding affinities of 188 natural and xenochemicals: Structural diversity of ligands. Toxicological Sciences, 54, 138-153.

    Article  CAS  Google Scholar 

  • Brian, J. V., Harris, C. A., Scholze, M., Backhaus, Th, Booy, P., Lamoree, M. H., et al. (2005). Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environmental Health Perspectives, 113, 721-728.

    Article  CAS  Google Scholar 

  • Brian, J. V., Harris, C. A., Scholze, M., Kortenkamp, A., Booij, P., Lamoree, M. H., et al. (2007). Evidence of estrogenic mixture effects on the reproductive performance of fish. Environmental Science and Technology, 41, 337-344.

    Article  CAS  Google Scholar 

  • Caldwell, D. J., Mastrocco, R., Hutchinson, T. H., Länge, R., Heijerick, D., Janssen, C., et al. (2008). Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinyl estradiol. Environmental Science and Technology, 42, 7046-7054.

    Article  CAS  Google Scholar 

  • Correia, A. D., Freitas, S., Scholze, M., Goncalves, J. F., Booij, P., Lamoree, M. H., et al. (2007). Mixtures of estrogenic chemicals enhance vitellogenic response in sea bass. Environmental Health Perspectives, 115, 115-121.

    Article  Google Scholar 

  • De Voogt, P., Belfroid, A. C., De Boer, J., & Rijs, G. B. J. (2006). Efficacy of wastewater treatment plants in the Netherlands for removal of estrogens and xenoestrogens. In: D. Vethaak, M. Schrap, & P. de Voogt (Eds.), Estrogens and xenoestrogens in the aquatic environment: An integrated approach for field monitoring and effect assessment (pp. 19-51). Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC). ISBN 1-880611-85-6.

    Google Scholar 

  • De Voogt, P., Kwast, O., Hendriks, R., & Jonkers, C. C. A. (2000). Alkylphenol ethoxylates and their degradation products in abiotic and biological samples from the environment. Analusis, 28, 776-782.

    Google Scholar 

  • Derksen, J. G. M., Leenen, E. J. T. M., & Roorda, J. H. (2005). Verkennende monitoring van hormoonverstorende stoffen en pathogenen op rwzi’s met aanvullende zuiveringstechnieken. Stichting Toegepast Onderzoek Water/Institute of Applied Water Research (STOWA), Utrecht. STOWA-report number 2005-32. Digitally available on www.stowa.nl (in Dutch).

    Google Scholar 

  • Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science and Technology, 32, 1549-1558.

    Google Scholar 

  • Esperanza, M., Suidan, M. T., Marfil-Vega, R., Gonzalez, C., Sorial, G. A., McCauley, P., et al. (2007). Fate of sex hormones in two pilot-scale municipal wastewater treatment plants: Conventional treatment. Chemosphere, 66, 1535-1544.

    Google Scholar 

  • Filby, A. L., Neuparth, T., Thorpe, K. L., Owen, R., Galloway, T. S., & Tyler, C. R. (2007). Health impacts of estrogens in the environment, considering complex mixture effects. Environmental Health Perspectives, 115, 1704-1710.

    Article  CAS  Google Scholar 

  • Houtman, C. J., Booij, P., Jover, E., Pascual del Rio, D., Swart, K., Velzen, M. van, et al. (2006a). Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional chromatography analyses. Chemosphere, 65, 2244-2252.

    Google Scholar 

  • Houtman, C. J., Booij, P., Van der Valk, K. M., Van Bodegom, P. M., Van den Ende, F., Gerritsen, A. M., et al. (2007). Biomonitoring of estrogenic exposure and identification of responsible compounds in bream from Dutch surface waters. Environmental Toxicology and Chemistry, 26, 898-907.

    Google Scholar 

  • Houtman, C. J., Van Houten, Y. K., Leonards, P. E. G., Brouwer, A., Lamoree, M. H. & Legler, J. (2006b). Biological validation of a sample preparation method for ER-CALUX bioanalysis of estrgoenic activity in sediment using mixtures of xeno-estrogens. Environmental Science and Technology, 40, 2455-2461.

    Google Scholar 

  • Jobling, S., Reynolds, T., White, R., Parker, M. G., & Sumpter, J. P. (1995). A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environmental Health Perspectives, 103, 582-587.

    Article  CAS  Google Scholar 

  • Jonkers, N., Knepper, T. P., & De Voogt, P. (2001). Aerobic biodegradation studies of nonylphenol polyethoxylates in river water using liquid chromatography - electrospray tandem mass spectrometry. Environmental Science and Technology, 35, 335-340.

    Article  CAS  Google Scholar 

  • Jonkers, N., Laane, R. W. P. M., & De Voogt, P. (2003). Fate of nonylphenol ethoxylates and their metabolites in two Dutch estuaries: Evidence of biodegradation in the field. Environmental Science and Technology, 37, 321-327.

    Article  CAS  Google Scholar 

  • Kanda, R., & Churchley, J. (2008). Removal of endocrine disrupting compounds during conventional wastewater treatment. Environmental Technology, 29, 315-323.

    Article  Google Scholar 

  • Karbe, L., Ternes, T., Wenzel, A., & Hecker, M. (2006). Estrogens, xenoestrogens, and effects on fish in German waters. In: D. Vethaak, M. Schrap, & P. de Voogt (Eds.), Estrogens and xenoestrogens in the aquatic environment: An integrated approach for field monitoring and effect assessment (pp. 365-406). Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC). ISBN 1-880611-85-6.

    Google Scholar 

  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., et al. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences, 104, 8897-8901.

    Article  CAS  Google Scholar 

  • Legler, J., Jonas, A., Lahr, J., Vehaak, A. D., Brouwer, A., & Murk, A. J. (2002). Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER CALUX reporter gene assay. Environmental Toxicology and Chemistry, 21, 473-479.

    Article  CAS  Google Scholar 

  • Legler, J., van den Brink, C. E., Brouwer, A., Murk, A. J., Van der Saag, P. T., & Vethaak, A. D. (1999). Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicological Sciences, 48, 55-66.

    Article  CAS  Google Scholar 

  • Mills, L. J., & Chichester, C. (2005). Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Science of the Total Environment, 343, 1-34.

    Article  CAS  Google Scholar 

  • Murk, A. J., Legler, J., Van Lipzig, M. M. H., Meerman, J. H. N., Belfroid, A. C., Spenkelink, A., et al. (2002). Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environmental Toxicology and Chemistry, 21, 16-23.

    Article  CAS  Google Scholar 

  • Noppe, H., Verheyden, K., Gillis, W., Courtheyn, D., Vanthemsche, P., & De Brabander, H. F. (2007). Multi-analyte approach for the determination of ngL−1 levels of steroid hormones in unidentified aqueous samples. Analytica Chimica Acta, 586, 22-29.

    Article  CAS  Google Scholar 

  • Purdom, C. E., Hardiman, P. A., Bye, V. J., Eno, N. C., Tyler, C. R., & Sumpter, J. P. (1994). Estrogenic effects of effluents from sewage treatment works. Chemistry and Ecology, 8, 275-285.

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz, S., Lopez de Alda, M. J., & Barcelo, D. (2004). Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. Journal of Chromatography A, 1045, 85-92.

    Article  CAS  Google Scholar 

  • Routledge, E. J., Sheahan, D., Desbrow, C., Brighty, G. C., Waldock, M., & Sumpter, P. J. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science and Technology, 32, 1559-1565.

    Google Scholar 

  • Shappell, N. W. (2006). Estrogenic activity in the environment: Municipal wastewater effluent, river, ponds, and wetlands. Journal of Environmental Quality, 35, 122-132.

    Article  CAS  Google Scholar 

  • Sumpter, J. P., & Jobling, S. (1995). Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environmental Health Perspectives, 103(Suppl. 7), 173-178.

    Google Scholar 

  • Ternes, T. A., Andersen, H., Gilberg, D., & Bonerz, M. (2002). Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry, 74, 3498-3504.

    Article  CAS  Google Scholar 

  • Thomas, K. V., Balaam, J., Hurst, M. R., & Thain, J. E. (2004). Identification of in vitro estrogen and androgen receptor agonists in North Sea offshore produced water discharges. Environmental Toxicology and Chemistry, 23, 1156-1163.

    Article  CAS  Google Scholar 

  • Thomas, K. V., Hurst, M. R., Matthiesen, P., & Waldock, M. (2001). Characterization of estrogenic compounds in water samples collected from United Kingdom estuaries. Environmental Toxicology and Chemistry, 20, 2165-2170.

    Article  CAS  Google Scholar 

  • Tollefsen, K. E., Harman, C., Smith, A., & Thomas, K. V. (2007). Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Marine Pollution Bulletin, 54, 277-283.

    Article  CAS  Google Scholar 

  • Vethaak, A. D., Lahr, J., Schrap, S. M., Belfroid, A. C., Rijs, G. B. J., Gerritsen, A., et al. (2005). An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere, 59, 511-524.

    Article  CAS  Google Scholar 

  • Vethaak, D., Schrap, M., & De Voogt, P. (Eds.). (2006). Estrogens and xenoestrogens in the aquatic environment: An integrated approach for field monitoring and effect assessment. Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC). ISBN 1-880611-85-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Lamoree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lamoree, M.H., Derksen, J.G.M., van der Linden, S.C., Uijterlinde, C.A., de Voogt, P. (2010). Efficiency of Removal of Compounds with Estrogenic Activity During Wastewater Treatment: Effects of Various Removal Techniques. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_15

Download citation

Publish with us

Policies and ethics