Skip to main content

Quantitative Approach to Diversity and Decline in Late Palaeozoic Trilobites

  • Chapter
Earth and Life

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

Quantitative data reveal complex evolution in late trilobite diversity. In the Middle to early Late Devonian, a series of extinction events led to dramatic taxonomic impoverishment of the trilobites. In the Famennian, when only two orders remained, originations began to compensate for the still high extinction rates, marking the start of a remarkable diversification. Although interrupted by the major Hangenberg turnover, the general diversification trend accelerated in the Tournaisian, whereas extinctions became modest. Originations diminished markedly during the Viséan and Serphukovian, causing this diversity to decrease to the level observed in the Frasnian. It was never much higher thereafter, despite massive restructuring of the trilobite communities in the early Pennsylvannian; this allowed for progressive domination of the ditomopygines. After another decline in the Kasimovian, a period of stasis occurred with very low diversity levels and almost no renewal. The last burst of diversification occurred in the Wordian, but ceased rapidly in the Capitanian when degradation of environmental conditions began to inhibit originations. Thus, extinction of the Trilobita at the end of the Permian resulted from disappearance of merely a handful of genera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrain JM (2008) A global species database of Trilobita: progress, results, and revision of the Treatise. In: Rabano I, Gozalo R, Garcia-Bellido D (eds) Advances in Trilobite research. Cuadernos del Museo Geominero 9:27–28

    Google Scholar 

  • Ali JR, Wignall PB (2007) Comment on ‘Fusiline biotic turnover across the Guadalupian–Lopingian (middle–upper Permian) boundary in mid-oceanic carbonate build-ups: biostratigraphy of accreted limestone in Japan’ by Ayano Ota and Yukio Isozaki. J Asian Earth Sci 30:199–200

    Article  Google Scholar 

  • Ali JR, Thompson GM, Song X et al (2002) Emeishan basalts (SW China) and the ‘end-Guadalupian’ crisis: magnetobiostratigraphic constraints. J Geol Soc London 159:21–29

    Article  Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ et al (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  Google Scholar 

  • Balashova R (1960) Some early Permian trilobites from the north-east of the USSR. Materialy po Geologii i Polezn’m Iskopaem’p Severo-Vostoka SSSR. Magadan 14:74–82

    Google Scholar 

  • Bottjer DJ, Clapham ME, Fraiser ML et al (2008) Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. Geol Soc Am Today 18:4–10

    Google Scholar 

  • Brauckmann C, Chlupáč I, Feist R (1993) Trilobites at the Devonian–Carboniferous boundary. In: Streel M, Sevastopoulo MG, Paproth E (eds) Devonian–Carboniferous boundary. Ann Soc Géol Belgique 115:507–518

    Google Scholar 

  • Brezinski DK (1992) Permian trilobites from West Texas. J Paleontol 66:924–943

    Google Scholar 

  • Brezinski DK (1998) Trilobites from Lower Mississippian starved basin facies of the southern United States. J Paleontol 72:718–725

    Google Scholar 

  • Brezinski DK (1999) The rise and fall of late Paleozoic trilobites of the United States. J Paleontol 73:164–175

    Google Scholar 

  • Brezinski DK (2003) Evolutionary and biogeographic implications of phylogenetic analysis of the late Paleozoic trilobite genus Paladin. In: Lane PD, Siviter D, Fortey RA (eds) Trilobites and their relatives. Spec Pap Palaeontol 70:363–375

    Google Scholar 

  • Brezinski DK (2008) Phylogenetics, systematics, paleoecology, and evolution of the trilobite genera Paladin and Kaskia from the United States. J Paleontol 82:511–527

    Article  Google Scholar 

  • Briggs DEG, Fortey RA, Clarkson ENK (1988) Extinction and the fossil record of the arthropods. In: Larwood GP (ed) Extinction and survival in the fossil record. Clarenton Press, Oxford

    Google Scholar 

  • Bultynck P (2000) Subcommission on Devonian stratigraphy. Recognition of Devonian series and stage boundaries in geological areas. Cour Forsch-Inst Senckenberg 225:1–347

    Google Scholar 

  • Campbell KSW (1961) Carboniferous fossils from the Kuttung rocks of New South Wales. Palaeontology 4:428–474

    Google Scholar 

  • Chlupáč I (1994) Devonian trilobites – evolution and events. Geobios 27:487–505

    Article  Google Scholar 

  • Chlupáč I, Feist R, Morzadec P (2000) Trilobites and standard Devonian stage boundaries. In: Bultynck P (ed) Subcommission on Devonian stratigraphy. Fossil groups important for boundary definition. Cour Forsch-Inst Senckenberg 220:87–98

    Google Scholar 

  • Clapham ME, James NP (2008) Paleoecology of Early–Middle Permian marine communities in eastern Australia: response to global climate change in the aftermath of the Late Paleozoic ice age. Palaios 23:738–750

    Article  Google Scholar 

  • Clapham ME, Shen S, Bottjer DJ (2009) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:32–50

    Article  Google Scholar 

  • Dickins JM (1996) Problems of a Late Palaeozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeogr Palaeoclimatol 125:185–197

    Article  Google Scholar 

  • Engel BA, Morris LN (1997) Biostratigraphy of eastern Australian Carboniferous trilobites. Geologica Palaeontol 31:67–96

    Google Scholar 

  • Erwin DH (1993) The Great Paleozoic crisis, life and death in the Permian. Columbia University, New York

    Google Scholar 

  • Erwin DH, Pan HZ (1996) Recoveries and radiations: gastropods after the Permo–Triassic mass extinction. In: Hart MB (ed) Biotic recovery from mass extinction events. Geol Soc Spec Pub 102:223–229

    Google Scholar 

  • Feist R (1991) The Late Devonian trilobite crises. In: Buffetaut E, Flessa K, Hallam A (eds) Innovations and revolutions in the biosphere. Hist Biol 5:197–214

    Google Scholar 

  • Feist R (1995) Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, New York

    Google Scholar 

  • Feist R (2002) Trilobites from the latest Famennian Kellwasser crisis in North Africa (Mrirt, central Moroccan Meseta). Acta Palaeontol Pol 47:19–26

    Google Scholar 

  • Feist R, Petersen MS (1995) Origin and spread of Pudoproetus, a survivor of the Late Devonian trilobite crisis. J Paleontol 69:99–109

    Google Scholar 

  • Feist R, Schindler E (1994) Trilobites during the Frasnian Kellwasser crisis in European Late Devonian cephalopod limestones. In: Königshof P, Werner R (eds) Willi Ziegler-Festschrift II. Cour Forsch-Inst Senckenberg 169:195–223

    Google Scholar 

  • Feist R, McNamara KJ, Crônier C, Lerosey-Aubril R (2009) Patterns of extinction and recovery of phacopid trilobites during the Frasnian–Famennian (Late Devonian). Geol Mag 146:12–33

    Article  Google Scholar 

  • Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Pub 72:691–733

    Google Scholar 

  • Gandl J (1987) Die Karbon-Trilobiten des Kantabrischen Gebirges (NW Spanien), 4: Trilobiten aus dem höheren Namur und tieferen Wesfal. Abh Senckenberg Naturforsch Ges 543:1–79

    Google Scholar 

  • Gandl J (2011) Los trilobites Carboníferos de la Cordillera Cantábrica (España noroccidental), 5: Trilobites [Carboniferous trilobites of the Cantabrian Mountains (NW Spain), 5: upper Westphalian] Abhandlungen der Senckenberg Gesellschaft für Naturforschung, Band 569:143pp

    Google Scholar 

  • Garzanti E, Angiolini L, Brunton H et al (1998) The Bashkirian ‘Fenestella shales’ and the Moscovian ‘Chaetetid shales’ of the Tethys Himalaya (South Tibet, Nepal and India). J Asian Earth Sci 16:119–141

    Article  Google Scholar 

  • George AD, Chow N (2002) The depositional record of the Frasnian/Famennian boundary interval in a forereef succession, Canning Basin, Western Australia. Palaeogeogr Palaeoclimatol 181:347–374

    Article  Google Scholar 

  • Girard C, Feist R (1997) Eustatic trends in conodont diversity across the Frasnian–Famennian boundary in the stratotype area, Montagne Noire, Southern France. Lethaia 29:329–337

    Article  Google Scholar 

  • Girard C, Klapper G, Feist R (2005) Subdivision of the terminal Frasnian linguiformis Conodont Zone, revision of the correlative interval of Montagne Noire Zone 13, and discussion of stratigraphically significant associated trilobites. In: Over JR, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian–Triassic biotic and climatic events: towards an integrated approach. Elsevier, Amsterdam, pp 181–198

    Google Scholar 

  • Hahn G (1990) Palaeobiogeographic distribution and biostratigraphic significance of Lower Carboniferous trilobites: a review. Cour Forsch-Inst Senckenberg 130:199–205

    Google Scholar 

  • Hahn G, Hahn R (1981) Kulm-Trilobiten und ihr Lebensraum. Natur Museum 111:355–361

    Google Scholar 

  • Hahn G, Hahn R (1991) Trilobiten aus dem Karbon von SE-Alaska, Teil 1. Geologica Palaeontol 25:147–191

    Google Scholar 

  • Hahn G, Hahn R (1992) Trilobiten aus dem Karbon von SE-Alaska, Teil 2. Geologica Palaeontol 26:99–133

    Google Scholar 

  • Hahn G, Hahn R (1993) Neue Trilobiten-Funde aus dem Karbon und Perm Alaskas. Geologica Palaeontol 27:141–163

    Google Scholar 

  • Hahn G, Hahn R (2005) Kulm trilobites (Lower Carboniferous) from S-China. Palaeontol ZH 79:371–375

    Google Scholar 

  • Hahn G, Hahn R, Yuan J-L (1989) Trilobites from the Upper Carboniferous (Westphalian A) of S-China (N-Guangxi). Geologica Palaeontol 23:113–203

    Google Scholar 

  • Hahn G, Brauckmann C, Gröning E (2001) Carboniferous and Permian trilobites in South America. Acta Geol Leopold 24:259–270

    Google Scholar 

  • Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68

    Article  Google Scholar 

  • Harper CW Jr (1996) Patterns of diversity, extinction and origination in the Ordovician–Devonian Stropheodontacea. Hist Biol 11:267–288

    Article  Google Scholar 

  • Heckel PH, Clayton G (2006) The Carboniferous system. Use of the new official names for the subsystems, series, and stages. Geol Acta 4:403–407

    Google Scholar 

  • Isbell JL, Miller MF, Wolfe KL, Lenaker PA (2003) Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan MA, Archer AA (eds) Sedimentary giants – extreme depositional environments. Geol Soc Am Spec Pap 370:5–24

    Google Scholar 

  • Isozaki Y, Kawahata H, Minoshima K (2007a) The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld 16:16–30

    Article  Google Scholar 

  • Isozaki Y, Kawahata H, Ota A (2007b) A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high-productivity ‘Kamura event’ and its collapse in Panthalassa. Global Planet Change 55:21–38

    Article  Google Scholar 

  • Johnson JG, Klapper G, Sandberg CA (1985) Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bull 96:57–587

    Google Scholar 

  • Kobayashi T, Hamada T (1980) Carboniferous trilobites of Japan in comparison with Asian, Pacific and other faunas. Palaeontol Soc Japan Spec Pap 23:1–132

    Google Scholar 

  • Kossovaya OL (1996) The Mid-Carboniferous rugose coral recovery. Geol Soc London Spec Pub 102:187–199

    Article  Google Scholar 

  • Kossovaya OL, Guseva EA, Lukin AE et al (2001) Middle Artinskian (Early Permian) ecological events: a case study of the Urals and northern Timan. Proc Estonian Acad Sci Geol 50:95–113

    Google Scholar 

  • Lerosey-Aubril R (2008) Trilobite biogeography and Permian biochores. In: Rabano I, Gozalo R, Garcia-Bellido D (eds) Advances in trilobite research. Cuadernos del Museo Geominero 9:225–228

    Google Scholar 

  • Leven EY, Bogoslovskaya MF, Ganelin VG et al (1996) Reorganization of marine biota during the mid-Early Permian epoch. Stratigr Geo Correl 4:57–66

    Google Scholar 

  • McNamara KJ, Feist R (2008) Patterns of trilobite evolution and extinction during the Frasnian/Famennian mass extinction, Canning Basin, Western Australia. In: Rabano I, Gozalo R, Garcia-Bellido D (eds) Advances in Trilobite research. Cuadernos del Museo Geominero 9:269–274

    Google Scholar 

  • Montañez IP, Tabor NJ, Niemeier D et al (2007) CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315:87–91

    Article  Google Scholar 

  • Morzadec P (1992) Evolution des Asteropyinae (Trilobita) et variations eustatiques au Dévonien. Lethaia 25:85–96

    Article  Google Scholar 

  • Nemirovskaya T, Nigmadganov I (1994) The mid-Carboniferous conodont events. Cour Forsch-Inst Senckenberg 168:319–333

    Google Scholar 

  • Ogg JG, Ogg G, Gradstein FM (2008) The concise geologic time scale. Cambridge University, Cambridge

    Google Scholar 

  • Ota A, Isozaki Y (2006) Fusiline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate build-ups: biostratigraphy of accreted limestone in Japan. J Asian Earth Sci 26:353–368

    Article  Google Scholar 

  • Owens RM (1990) Carboniferous trilobites: the beginning of the end. Geol Today 6:96–100

    Article  Google Scholar 

  • Owens RM (2003) The stratigraphical distribution and extinctions of Permian trilobites. Spec Pap Palaeontol 70:377–397

    Google Scholar 

  • Pan H (2004) Remarks on Permian extinction and Triassic recovery of gastropods. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery, evidence from the Palaeozoic and Triassic of South China. University of Science and Technology, China Press, Beijing [in Chinese with English summary]

    Google Scholar 

  • Raymond AC, Kelley PH, Lutken CB (1990) Dead by degrees: articulate brachiopods, paleoclimate and the Mid-Carboniferous extinction event. Palaios 5:111–123

    Article  Google Scholar 

  • Retallack GJ, Metzger CA, Greaver T et al (2006) Middle–Late Permian mass extinction on land. Geol Soc Am Bull 118:1398–1411

    Article  Google Scholar 

  • Rygel MC, Fielding CR, Frank TD et al (2008) The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res 78:500–511

    Article  Google Scholar 

  • Saunders WB, Ramsbottom WHC (1986) The mid-Carboniferous eustatic event. Geology 14:208–212

    Article  Google Scholar 

  • Scotese CR, McKerrow WS (1990) Revised world maps and introduction. In: McKerrow, WS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography. Geol Soc Mem 12:1–21

    Google Scholar 

  • Shen SZ, Shi GR (2002) Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region. Paleobiology 28:449–463

    Article  Google Scholar 

  • Shen S-Z, Zhang H, Li W-Z et al (2006) Brachiopod diversity patterns from Carboniferous to Triassic in South China. Geol J 41:345–361

    Article  Google Scholar 

  • Shi GR, Shen SZ (2000) Asian–western Pacific Permian Brachiopoda in space and time: biogeography and extinction patterns. In: Yin HF, Dickins JM, Shi GR, Tong JN (eds) Permian–Triassic evolution of Tethys and western circum-Pacific. Elsevier, Amsterdam, pp 327–352

    Google Scholar 

  • Stanley SM, Yang X (1994) A double mass extinction at the end of the Paleozoic era. Science 266:1340–1344

    Article  Google Scholar 

  • Tabor NJ, Poulsen CJ (2008) Paleoclimate across the Late Pennsylvanian–Early Permian tropical paleolatitudes: a review of climate indicators, their distribution, and relation to paleophysiographic climate factors. Palaeogeogr, Palaeoclimat, Palaeoecol 268:293–310

    Article  Google Scholar 

  • Tong JN (2004) Evolution of foraminiferid groups through the Paleozoic–Mesozoic transition in South China. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery, evidence from the Palaeozoic and Triassic of South China. University of Science and Technology of China Press, Beijing [in Chinese with English summary], pp 702–719

    Google Scholar 

  • Walliser OH (1985) Natural boundaries and commission boundaries in the Devonian. Cour Forsch-Inst Senckenberg 7:401–408

    Google Scholar 

  • Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250

    Chapter  Google Scholar 

  • Wang X-D, Sugiyama T (2000) Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285–294

    Article  Google Scholar 

  • Wang X-D, Wang X-J, Zhang F et al (2006) Diversity patterns of Carboniferous and Permian rugose corals in South China. Geol J 41:329–343

    Article  Google Scholar 

  • Wass RE, Banks MR (1971) Some Permian trilobites from eastern Australia. Palaeontology 14:222–241

    Google Scholar 

  • Weber VN (1937) Trilobity kamennougolnych i permskych otloshenij SSSR. 1. Kamennougolnye trilobity. [Trilobites of the Carboniferous and Permian system of the USSR. 1. Carboniferous trilobites]. Monogr Paleontol SSSR 71:1–160 [in Russian with abridged English version].

    Google Scholar 

  • Weems RE (1992) The ‘terminal’ Triassic catastrophic event in perspective: a review of Carboniferous through Early Jurassic vertebrate extinction patterns. Palaeogeogr Palaeoclimatol Palaeoecol 94:1–29

    Article  Google Scholar 

  • Weidlich O (2002) Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 My of reef evolution. Geobios MS 24:287–294

    Article  Google Scholar 

  • Weidlich O, Bernecker M (2007) Differential severity of Permian–Triassic environmental changes on Tethyan shallow-water carbonate platforms. Global Planet Change 55:209–235

    Article  Google Scholar 

  • Yin H, Feng Q, Lai X et al (2007) The protracted Permo–Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Global Planet Change 55:1–20

    Article  Google Scholar 

  • Yuan JL (1988) Proetiden aus dem jüngeren Oberdevon von Süd-China. Palaeontogr A 201:1–102

    Google Scholar 

  • Yuan J-L, Li Y (2000) Biostratigraphy of Carboniferous trilobites in China. J Stratigr 24:283–289 [in Chinese with English summary]

    Google Scholar 

  • Yuan J-L, Xiang L-W (1998) Trilobite fauna at the Devonian–Carboniferous boundary in South China (S-Guizhou and N-Guangxi). Nat Mus Natur Sci, Spec Publ 8:1–281

    Google Scholar 

  • Ziegler W, Lane HR (1987) Cycles in conodont evolution from Devonian to mid-Carboniferous. In: Aldridge RJ (ed) Palaeobiology of conodonts. Horwood Press, Chichester, pp 148–163

    Google Scholar 

Download references

Acknowledgements

Many people have generously helped us gather the literature required to create the database used in this study; we are very grateful to all of them. We especially thank Martin Basse (Forschungsinstitute Senckenberg), Carsten Brauckmann (Technischen Universität Clausthal), James Cook, Gerhard Hahn, and Thomas A. Hegna (Yale University) for kind assistance in this regard. We are also indebted to Euan N.K. Clarkson and an anonymous referee for helpful comments and to the editor, John Talent, for major linguistic improvements in our text. This is a contribution of the Senckenberg Forschungsinstitut und Naturmuseum (Frankfurt am Main) and UMR 5554, CNRS (Montpellier) to IGCP Project 596 “Climate change and biodiversity patterns in the Mid-Palaeozoic (Early Devonian to Late Carboniferous)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy Lerosey-Aubril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lerosey-Aubril, R., Feist, R. (2012). Quantitative Approach to Diversity and Decline in Late Palaeozoic Trilobites. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_16

Download citation

Publish with us

Policies and ethics