Skip to main content

Floating Vegetated Mats for Improving Surface Water Quality

  • Chapter
  • First Online:
Emerging Environmental Technologies, Volume II

Abstract

Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feeding operations (CAFOs) represents an extreme in water quality problems. Wastewater lagoons are used for primary treatment which includes settling of solids and loss of gases by volatilization. Additional methods are often used to treat the wastewater from the lagoons. These methods include passing the wastewater through constructed wetlands, where both plant uptake and biological processes such as denitrification remove or retain nutrients, and application of the wastewater to agricultural or forestry land. A new concept for improving surface water quality including that of wastewater lagoons is to grow vegetation on floating platforms in the water body. Little research has been conducted in this area, although this technology basically is application of hydroponics using floating platforms for the vegetation which then utilizes nutrients contained in the contaminated waters. Research conducted by USDA-ARS and the University of Georgia at Tifton, GA has focused on determining the feasibility of growing vegetation to produce biomass and remove nutrients from contaminated surface water bodies. The research has shown that different plant species can be found to grow on floating platforms in a range of different water qualities. In the most contaminated water tested thus far, anaerobic swine lagoon wastewater, it was determined that plants remove nutrients to their maximum capacity such that total removal of nutrients from the water body is a function of biomass produced. This chapter explains the concepts and techniques involved in using floating vegetated mats on contaminated water bodies for nutrient removal, reports results from completed studies, discusses ongoing projects, and identifies research needs for this emerging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. EPA (U.S. Environmental Protection Agency). (1990) National water quality inventory. 1988 Report to Congress. Office of Water. U.S. Government Printing Office, Washington, DC, USA.

    Google Scholar 

  2. Environmental indicators of water quality in the United States. (1996) EPA 841-R-96-002. USEPA, Office of Water (4503F), U.S. Government Printing Office, Washington, DC, USA.

    Google Scholar 

  3. NRC (National Research Council) (1993) Managing Wastewater in Coastal Urban Areas. National Academy Press, Washington, DC.

    Google Scholar 

  4. OECD (Organization for Economic Cooperation and Development) (1982) Eutrophication of Waters: Monitoring, Assessment and Control. Organisation for Economic and Cooperative Development, Paris.

    Google Scholar 

  5. NRC (National Research Council) (1992) Restoration of Aquatic Ecosystems: Science, Technology and Public Policy. National Academy Press, Washington, DC.

    Google Scholar 

  6. Howarth, R.W. (1988) Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. Syst., 19: 98–110.

    Article  Google Scholar 

  7. Howarth, R.W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J.A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., and Zhao-Liang, Zhu (1996) Regional nitrogen budgets and riverine inputs of N and P for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35: 75–139.

    Article  CAS  Google Scholar 

  8. Nixon, S.W., Ammerman, J.W., Atkinson, L.P., Berounsky, V.M., Bilen, G., Boicourt, W.C., Boynton, W.R., Church, T.M., DiToro, D.M., Elmgren, R., Garber, J., Giblin, A.E., Jahnke, R.A., Owens, N.J. P., Pilson, M.E. Q., and Seitzinger, S.P. (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry, 35: 141–180.

    Article  CAS  Google Scholar 

  9. Carpenter, S.R., Caraco, N.R., Correll, D.L., Howarth, R.W., Sharpley, A.N., and Smith, V.H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8(3): 559–568.

    Article  Google Scholar 

  10. Sandstedt, C.A. (1990) Nitrates: Sources and Their Effects Upon Humans and Livestock. American University, Washington, DC.

    Google Scholar 

  11. Amdur, M.O., Dull, J., and Klassen, E.D. (Eds.) (1991) Casarett and Doull’s Toxicology. 4th ed. , Pergamon Press, New York.

    Google Scholar 

  12. Meisinger, J.J. (1976) Nitrogen application rates consistent with environmental constraints for potatoes on Long Island. Cornell Univ. Agric. Exp. Sta. Search Agric., 6: 1–9.

    Google Scholar 

  13. Saffigna, P.G., and Keeney, D.R. (1977) Nitrate and chloride in groundwater under irrigated agriculture in central Wisconsin. Ground Water, 15: 170–177.

    Article  CAS  Google Scholar 

  14. Exner, M.E., and Spalding, R.F. (1979) Evolution of contaminated groundwater in Holt County, Nebraska. Water Resour. Res., 15: 139–147.

    Article  CAS  Google Scholar 

  15. Spalding, R.F. and Exner, M.E. (1980) Areal, vertical, and temporal differences in groundwater chemistry, I. Inorganic constituents. J. Environ. Qual., 9: 466–479.

    Article  CAS  Google Scholar 

  16. Wagner, G.H., Steele, K.F., MacDonald, H.C., and Coughlin, T.L. (1976) Water quality as related to linears, rock chemistry and rain water chemistry in a rural carbonate terrain. J. Environ. Qual., 5: 444–451.

    Article  CAS  Google Scholar 

  17. Hill, A.R. (1982) Nitrate distribution in the groundwater of the Alliston region of Ontario, Canada. Ground Water, 20: 697–702.

    Article  Google Scholar 

  18. Edmunds, W.M., Bath, A.H., and Miles, D.L. (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochimica et Cosmochimica Acta, 46: 2069–2081.

    Article  CAS  Google Scholar 

  19. Oakes, D.B., Young, C.P., and Foster, S.S.D. (1981) The effects of farming practices on groundwater quality in the United Kingdom. Sci. Total Environ., 21: 17–30.

    Article  CAS  Google Scholar 

  20. Hubbard, R.K., Thomas, D.L., Leonard, R.A., and Butler, J.L. (1987) Surface runoff and shallow groundwater quality as affected by center pivot applied dairy cattle wastes. Trans. ASAE, 30: 430–437.

    Google Scholar 

  21. Hubbard, R.K., Gascho, G.J., Hook, J.E., and Knisel, W.G. (1986) Nitrate movement into shallow groundwater through a Coastal Plain sand. Trans. ASAE, 29: 1564–1571.

    CAS  Google Scholar 

  22. Naney, J.W., Kent, D.C., Smith, S.J., and Webb, B.B. (1987) Variability of groundwater quality under sloping agricultural watersheds in Oklahoma. In Proc., Monitoring, Modeling, and Mediating Water Quality. Am. Water Resour. Assoc. Am Soc. Civil Eng., Bethesda, Md. pp. 189–197.

    Google Scholar 

  23. Sharpley, A.N., Smith, S.J., and Naney, J.W. (1987) Environmental impact of agricultural nitrogen and phosphorus use. J. Agric. Food Chem., 35: 812–817, Sept./Oct.

    Article  CAS  Google Scholar 

  24. Heathwaite, L., Sharpley, A., and Gburek, W. (2000) A conceptual approach for integrating phosphorus and nitrogen management at watershed scales. J. Environ. Qual., 29(1): 158–166.

    Article  CAS  Google Scholar 

  25. Hunsaker, C.T. and Levine, D.A. (1995) Hierarchical approaches to the study of water quality in large rivers. Bioscience, 45(3): 193–203.

    Article  Google Scholar 

  26. Johnson, L.B., Richards, C., Host, G.E., and Arthur, J.W. (1997) Landscape influences on water quality and quantity: A landscape approach. Biogeochemistry, 10: 105–141.

    Google Scholar 

  27. Spahr, N.E. and Wynn, K.H. (1997) Nitrogen and phosphorus in surface waters of the Upper Colorado River Basin. J. Am. Water Resour. Assoc., 33(3): 547–560.

    Article  CAS  Google Scholar 

  28. Walker, W.E., and Kroeker, B.E. (1982) Nitrates in Groundwater Resulting from Manure Applications in Irrigated Croplands. EPA 600/2-82-079, U.S. Environ. Protection Agency, Washington, DC.

    Google Scholar 

  29. Romkens, J.M. and Nelson, D.W. (1974) Phosphorus relationships in runoff from fertilized soils. J. Environ. Qual., 3: 10–13.

    Article  CAS  Google Scholar 

  30. Holt, R.G., Timmons, D.R., and Latterill, J.Y. (1970) Accumulation of phosphates in water. J. Agric. Food Chem., 18: 782–784.

    Article  Google Scholar 

  31. Russell, J.S. (1960) Soil fertility changes in the long term experimental plots at Kybybolite, South Australia. II. Changes in phosphorus. Aust. J. Agric. Res., 11: 927–947.

    CAS  Google Scholar 

  32. Spencer, W.F. (1957) Distribution and availability of phosphates added to a Lakeland fine sand. Soil Sci. Soc. Am. Proc., 21: 141–144.

    Article  CAS  Google Scholar 

  33. Hingston, F.J. (1959) The loss of applied phosphorus and sulphur from soils under pasture in W.A. J. Aust. Inst. Agric. Sci., 25: 209–213.

    CAS  Google Scholar 

  34. Bolton, J. and Coulter, J.K. (1966) Report on Forest Research. London: Forestry Commission 1965.

    Google Scholar 

  35. Olsen, S.R., and Watanabe, F.S. (1970) Diffusive supply of phosphorus in relation to soil textural variations. Soil Sci., 110: 318–327.

    Article  Google Scholar 

  36. USDA Soil Conservation Service. (1992) National Engineering Handbook. Part 651: Agri-cultural Waste Management Field Manual. Washington D.C.: USDA Soil Conservation Service. Available at http://www.info.usda.gov/CED/ftp/CED/neh651-ch11.pdf. Accessed 19 February 2004

  37. Westerman, P.W., Safley, L.M., Jr., and Barker, J.C. (1990) Lagoon liquid nutrient variation over four years for lagoons with recycle systems. In Proc. 6th Int. Symp. On Agric. And Food Processing Wastes, 41–49. St. Joseph, MI: ASAE.

    Google Scholar 

  38. Pork Industry Handbook. (1998) Lagoon management. PIH-62. West Lafayette, Ind.: Purdue University, Cooperative Extension Service.

    Google Scholar 

  39. ASAE Standards. (1997) EPA403.2: Design of anaerobic lagoons for animal waste management. St. Joseph, MI.: ASAE.

    Google Scholar 

  40. Lawson, T.B. (1995) Fundamentals of Aquaculture Engineering. Chapman & Hall, New York.

    Google Scholar 

  41. Lin, Y.-F., Jing, S.-R., Lee, D.-Y., and Wang, T.-W. (2002a) Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209: 169–184.

    Article  CAS  Google Scholar 

  42. Lin, Y.-F., Jing, S.-R., Lee, D.-Y., and Wang, T.-W. (2002b) Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetland system in the start-up phase. Water Environ. Res., 74: 136.

    Article  CAS  Google Scholar 

  43. Liao, P.B., Mayo, R.B. (1974) Intensified fish culture combining recirculation with pollution abatement. Aquaculture, 3: 61.

    Article  CAS  Google Scholar 

  44. Bergheim, A., Sanni, S., Indrevik, G., and Holland, P. (1993) Sludge removal from salmonid tank effluent using rotating microsieves. Aquacult. Eng., 12: 97.

    Article  Google Scholar 

  45. Van Rijn, J. (1996) The potential for integrated biological treatment system in recirculating fish culture – a review. Aquaculture, 139: 181.

    Article  Google Scholar 

  46. GschloBl, T, Steinmann, C., Schleypen, P, and Melzer, A. (1998) Constructed wetlands for effluent polishing of lagoon. Water Res., 32: 2639.

    Article  Google Scholar 

  47. Hatfield, J.L., Brumm, M.C., and Melvin, S.W. (1998) Swine manure management. In Agricultural Uses of Municipal, Animal, and Industrial Byproducts. R.J. Wright, W.D. Kemper, P.D. Millner, J.F. Power, and R.F. Korcak (eds.), Conservation Research Report 44, USDA Agricultural Research Service, Washington, DC, pp. 78–90.

    Google Scholar 

  48. Di, H.J., Cameron, K.C., Moore, S., and Smith, N.P. (1999) Contribution to nitrogen leaching and pasture uptake by autumn-applied dairy effluent and ammonium fertilizer labeled with 15N isotope. Plant Soil, 210(2): 189–198.

    Article  CAS  Google Scholar 

  49. Newton, G.L., Bernard, J.K., Hubbard, R.K., Allison, J.R., Lowrance, R.R., Gascho, G.J., Gates, R.N., and Vellidis, G. (2003) Managing manure nutrients through multi-crop forage production. J. Dairy Sci., 86(6): 2243–2252.

    Article  CAS  Google Scholar 

  50. Atwill, E.R., Hou, L.L., Karle, B.A., Harter, T., Tate, K.W., and Dahlgren, R.A. (2002) Transport of Cryptosporidium parvum oocytes through vegetated buffer strips and estimated filtration efficiency. Appl. Environ. Microbiol., 68(11): 5517–5527.

    Article  CAS  Google Scholar 

  51. Cronk, J.K., and Mitsch, W.J. (1993) Phosphorus retention and distribution in constructed wetlands. ASAE Paper No.932579. St. Joseph, MI: ASAE.

    Google Scholar 

  52. Macoon, B., Woodard, K.R., Sollenberger, L.E., French, E.C. III, Portier, K.M., Graetz, D.A., Prine, G.M., and Van Hor, H.H. Jr. (2002) Dairy effluent effects on herbage yield and nutritive value of forage cropping systems. Agron. J. 94: 1043–1049.

    Article  Google Scholar 

  53. Woodard, K.R., Sollenberger, L.E., French, E.C., Sweat, L.A., Macoon, B., Graetz, D.A., and Van Horn, H.H. (2001) An environmental comparison of two year-round forage systems under dairy effluent irrigation in the Suwannee River area. Pages 49–60 in Proc. 38th Ann. Florida Dairy Prod. Conf. Univ. Florida, Gainesville. (Also, Online. Available: http://www.animal.efl.edu/dairy/2001Dairy Production Conf%5C2001Dairy Productionconf.htm).

  54. Newton, G.L., Gascho, G.J., Vellidis, G., Hubbard, R.K., Gates, R.N., and Lowrance, R. 2000. Liquid dairy manure fertilization of triple-crop forage systems. Pages 273–280 in Animal, Agricultural and Food Processing Wastes. ASAE, St. Joseph, MI.

    Google Scholar 

  55. Newton, G.L., Gascho, G.J., Hubbard, R.K., Vellidis, G., Gates, R.N., Lowrance, R., and Allison, J.R. (2001) Triple-crop forage systems for dairy manure sprayfields. Pages 186–197 in Proc. Internl. Symp. Addressing Animal Production and Environmental Issues. North Carolina State Univ., Raleigh, NC.

    Google Scholar 

  56. Hubbard, R.K., Newton, G.L, Davis, J.G., Lowrance, R., Vellidis, G., and Dove, R. (1998) Nitrogen assimilation by riparian buffer systems receiving swine lagoon wastewater. Trans. ASAE, 41(5): 291–295.

    Google Scholar 

  57. Hubbard, R.K., Newton, G.L., and Ruter, J.M. (2007) A farm-scale test of nitrogen assimilation by vegetated buffer systems receiving swine lagoon effluent by overland flow. Trans. ASABE, 50(1): 53–64.

    Google Scholar 

  58. Cole, S. (1998) The emergence of the treatment wetlands. Environ. Sci. Technol., 32: 218A.

    Article  CAS  Google Scholar 

  59. International Water Association (IWA) (2000) Constructed Wetlands for Pollution Control. Processes, Performance, Design and Operation. IWA Publishing, London.

    Google Scholar 

  60. Breen, P.F. (1990) A mass balance method for assessing the potential of artificial wetlands for wastewater treatment. Water Res., 24(6): 689–697.

    Article  CAS  Google Scholar 

  61. Kadlec, R.H. and Knight, R.L. (1996) Treatment Wetlands. CRC Press, Boca Raton, FL.

    Google Scholar 

  62. Reddy, K., Patrick, W., and Lindau, C. (1989) Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr., 34: 1004–1013.

    Article  CAS  Google Scholar 

  63. Surrency, D. (1993) Evaluation of aquatic plants for constructed wetlands. In Constructed Wetlands for Water Quality Improvement. Moshiri, G. (ed.), CRC Press, Lewis Publishers, Boca Raton, FL, pp. 349–386.

    Google Scholar 

  64. Maine, M.A., Sune, N., Hadad, H., Sanchez, G, and Bonetto, C. (2007) Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere, 68: 1105–1113.

    Article  CAS  Google Scholar 

  65. D’Angelo, E., and Reddy, K. (1993) Ammonium oxidation and nitrate reduction in sediment of a hypereutrophic lake. Soil Sci. Soc. Am. J., 57: 1156–1163.

    Article  Google Scholar 

  66. Matheson, F., Nguyen, M., Cooper, A., Burt, T., and Bull, E. (2002) Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecol. Eng., 19: 249–264.

    Article  Google Scholar 

  67. Bodelier, P., Libochant, A.J., Blom, C., and Laanbrock, H. (1996) Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia oxidizing bacteria to low-oxygen or anoxic habitats. Appl. Environ. Microbiol, 62: 4100–4107.

    CAS  Google Scholar 

  68. Sliekers, A., Derwort, N., Campos-Gomez, J., Strous, M., Kuenen, J., and Jetten, M. (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res., 36: 2475–2482.

    Article  CAS  Google Scholar 

  69. Hubbard, R.K., Ruter, J.M., Newton, G.L., and Davis, J.G. (1999) Nutrient uptake and growth response of six wetland/riparian plant species receiving swine lagoon effluent. Trans. ASAE, 42(5): 1331–1341.

    Google Scholar 

  70. Snow, A.M. and Ghaley, A.E. (2008a) Assessment of hydroponically grown macrophytes for their suitability as fish feed. Am. J. Biochem. Biotechnol., 4(1): 43–56.

    Article  CAS  Google Scholar 

  71. Snow, A.M. and Ghaly, A.E. (2008b) Use of barley for the purification of aquaculture wastewater in a hydroponics system. Am. J. Biochem. Biotechnol., 4(2): 89–102.

    CAS  Google Scholar 

  72. Snow, A.M. and Ghaly, A.E. (2008c) A comparative study of the purification of aquaculture wastewater using water hyacinth, water lettuce and parrot’s feather. Am. J. Biochem. Biotechnol., 5(4): 440–453.

    CAS  Google Scholar 

  73. Jo, J.Y., Ma, J.S., and Kim, I.B. (2002) Comparisons of four commonly used aquatic plants for removing nitrogen nutrients in the intensive bioproduction Korean (IBK) recirculating aquaculture system. Proceedings of the 3rd International Conference on Recirculating Aquaculture, Roanoke, VA, 20–23 Jul 2000.

    Google Scholar 

  74. Wen, L. and Recknagel, F. (2002) In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: preliminary results from growth chamber experiment. Agric. Ecosyst. Environ., 90(1): 9–15.

    Article  CAS  Google Scholar 

  75. DeBusk, T.A., Williams, L.D., and Ryther, J.H. (1984) Removal of nitrogen and phosphorus from wastewater in a water hyacinth based treatment system. J. Environ. Qual., 12(2): 257–262.

    Article  Google Scholar 

  76. Nuttall, P.M. (1985) Uptake of phosphorus and nitrogen by Myriophyllum aquaticum (Velloza) Verd. Growing in a wastewater treatment system. Aust. J. Mar. Freshwater Res., 36(4): 493–507.

    Article  CAS  Google Scholar 

  77. John, C.K. (1985) Treatment of Agro-industrial wastes using water hyacinth. Water Sci. Tech., 17(4–5): 781–790.

    CAS  Google Scholar 

  78. Dedes, J.G. and O’Shaughnessy, J.C.. (1985) A bench-scale study of wastewater aquaculture using the duckweed, Lemna minor. Environmental Engineering, Proceedings of the 1985 Specialty Conference, Boston, MA. P. 771–778.

    Google Scholar 

  79. Awuah, E., Oppong-Peprah, M., Lubberding, H.J. and Gijzen, H.J. (2004) Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage. J Toxicol. Environ. Health A, 67(20–22): 1727–1739.

    Article  CAS  Google Scholar 

  80. Cloris, M. and Araujo, H. (1987) Use of water hyacinth in tertiary treatment of domestic sewage. Water Sci. Tech., 19(10): 11–17.

    Google Scholar 

  81. Xu, H., Wang, B., Yang, Q. and Liu, R. (1992) Treatment of domestic sewage in macrohydrophyte ponds. Water Sci. Tech., 26(7–8): 1639–1649.

    CAS  Google Scholar 

  82. Jing, S.R., Lin, Y.F., Wang, T.W., and Lee, D.Y. (2002) Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes. J. Environ. Qual., 31: 690–696.

    Article  CAS  Google Scholar 

  83. Tripathi, B.D., and Shukla, Suresh C. (1991) Biological treatment of wastewater by selected aquatic plants. Environ. Pollut., 69: 69–78.

    Article  CAS  Google Scholar 

  84. Van Duzer, C. (2001) Preliminary note on the floating islands of Zacaton sinkhole, Mexico. Aquaphyte, 21(2): 4–5.

    Google Scholar 

  85. Kircher, A. (1671) Latium; id est, Nova & paralla Latti tum veteris tum novi description (Amersterdam, 1671) (Book 4, Part 3, Chapter 4 on the floating islands in the Lago della Regina. In 1959, Manuscripta St. Louis, MO.) reproduced this book on microfilm in a series called Microfilms of Rare and Out-of Print Books: List 83, Roll 16, No. 2.

  86. Lana Terzi, F. (1684) Magisterium naturae, et aris (Brescia, 1684–1692) (Vol. 3, Book 25, Chapter 1, Number 54 on the floating islands in the Lago della Regina). In 1970, Readex Microprint Corp. (New York) produced 19 microfiche to hold this publication in the Landmarks of Science series.

  87. Davy, H. (1830) Consolations in Travel or the Last Days of a Philosopher. J. Murray, London, pp. 122–129, (give an account of the floating islands in L Solfatara, or the Lago della Regina).Available in Landmark of Science series on microfiche by Readex Microprint Corp. (New York, N.Y.).

    Google Scholar 

  88. Hubbard, R.K., Gascho, G.J., and Newton, G.L. (2004) Use of floating vegetation to remove nutrients from swine lagoon wastewater. Trans. ASAE, 47(6): 1963–1972.

    CAS  Google Scholar 

  89. Hoaglund, D.R. and Arnon, D.I. (1950) The water-culture method for growing plants without soil. Circular 347. Berkeley, CA: California Agricultural Experiment Station.

    Google Scholar 

  90. Davis, S.M. (1991) Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. In the Florida Everglades. Aquat. Bot., 40(3): 203–224.

    Article  Google Scholar 

  91. Newman, S., Schuette, J., Grace, J.B., Rutchey, K., Fontaine, T., Reddy, K.R., and Pietrucha, M. (1998) Factors influencing cattail abundance in the northern Everglades. Aquat. Bot., 60(3): 265–280.

    Article  Google Scholar 

  92. Miao, S.L., and Sklar, F.H.. (1998) Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecol. Manage., 5(4): 245–263.

    Article  Google Scholar 

  93. Lorenzen, B., Brix, H., Mendelssohnn, I.A., McKee, K.L., and Miao, S.L. (2001) Growth, biomass allocation, and nutrient use efficiency in Cladium jamaicens and Typha domingensis as affected by phosphorus and oxygen availability. Aquat. Bot., 70(2): 117–133.

    Article  CAS  Google Scholar 

  94. Richardson, J.R., Bryant, W.L., Kitchens, W.M., Mattson, J.E., and Pope, K.R. (1990) An Evaluation of Refuge Habitats and Relationships to Water Quality, Quantity, and Hydroperiod. A.R. M. Loxahatchee national Wildlife Refuge, Boynton Beach, FL.

    Google Scholar 

  95. Koch, M.S. and Reddy, K.R.. (1992) Distribution of soil and plant nutrient along a trophic gradient in the Florida Everglades. Soil Sci. Soc. Am. J., 56(5): 1492–1499.

    Article  Google Scholar 

  96. Urban, N.H.S., Davis, M., and Aumen, N.G.. (1993) Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic, and fire regimes. Aquat. Bot., 46(3–4): 203–223.

    Article  CAS  Google Scholar 

  97. Rutchey, K., and Vilchek, L. (1994) Development of an Everglades vegetation map using SPOT image and the global positioning system. Photogramm. Eng. Remote Sens., 60(6): 767–775.

    Google Scholar 

  98. Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, G., and Skousen, J. (2001) Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air Soil Pollut., 128(3): 283–295.

    Article  CAS  Google Scholar 

  99. Grime, J.P., Hodgson, J.G., and Hunt, R. (1988) Comparative Plant Ecology. Unwin Hyman, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hubbard, R.K. (2010). Floating Vegetated Mats for Improving Surface Water Quality. In: Shah, V. (eds) Emerging Environmental Technologies, Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3352-9_9

Download citation

Publish with us

Policies and ethics