Skip to main content

Functions of Nuclear Receptors in Insect Development

  • Chapter
  • First Online:
Nuclear Receptors

Part of the book series: Proteins and Cell Regulation ((PROR,volume 8))

Abstract

Nuclear hormone receptors form a large family of ligand-activated transcription factors that regulate the transcription of target genes involved in a variety of important biological processes in animal development. Intense research over the past years has led to the characterization of the complete set of nuclear hormone receptors in several invertebrate genomes, including those of six insect species. In these organisms, extensive studies have defined critical roles for nuclear hormone receptors in controlling embryonic development, molting, metamorphosis, reproduction and metabolism. In this chapter, I review our understanding of the biological functions of all insect nuclear hormone receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laudet, V. and Bonneton, F. (2005). In Gilbert, L. I., Iatrou, K., Gill, S. S., eds., Comprehensive molecular insect science Vol. 3. Elsevier, Oxford/Amsterdam, 287–318.

    Chapter  Google Scholar 

  2. Glass, C. K. and Rosenfeld, M. G. (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14, 121–141.

    CAS  PubMed  Google Scholar 

  3. Aguinaldo, A. M., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., and Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493.

    Article  CAS  PubMed  Google Scholar 

  4. Bonneton, F., Chaumot, A., and Laudet, V. (2008). Annotation of Tribolium nuclear receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. Insect Biochem Mol Biol 38, 416–429.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, D., Xia, Q., Duan, J., Wei, L., Huang, C., Li, Z., Wang, G., and Xiang, Z. (2008). Nuclear receptors in Bombyx mori: Insights into genomic structure and developmental expression. Insect Biochem Mol Biol 38, 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  6. Cruz, J., Sieglaff, D. H., Arensburger, P., Atkinson, P. W., and Raikhel, A. S. (2009). Nuclear receptors in the mosquito Aedes aegypti: Annotation, hormonal regulation and expression profiling. FEBS J 276, 1233–1254.

    Article  CAS  PubMed  Google Scholar 

  7. King-Jones, K. and Thummel, C. S. (2005). Nuclear receptors – a perspective from Drosophila. Nat Rev Genet 6, 311–323.

    Article  CAS  PubMed  Google Scholar 

  8. Velarde, R. A., Robinson, G. E., and Fahrbach, S. E. (2006). Nuclear receptors of the honey bee: Annotation and expression in the adult brain. Insect Mol Biol 15, 583–595.

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand, S., Brunet, F. G., Escriva, H., Parmentier, G., Laudet, V., and Robinson-Rechavi, M. (2004). Evolutionary genomics of nuclear receptors: From twenty-five ancestral genes to derived endocrine systems. Mol Biol Evol 21, 1923–1937.

    Article  CAS  PubMed  Google Scholar 

  10. Maglich, J. M., Sluder, A., Guan, X., Shi, Y., McKee, D. D., Carrick, K., Kamdar, K., Willson, T. M., and Moore, J. T. (2001). Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2, research0029.1–0029.7.

    Google Scholar 

  11. Thummel, C. S. (1995). From embryogenesis to metamorphosis: The regulation and function of Drosophila nuclear receptor superfamily members. Cell 83, 871–877.

    Article  CAS  PubMed  Google Scholar 

  12. Yao, T. P., Segraves, W. A., Oro, A. E., McKeown, M., and Evans, R. M. (1992). Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–72.

    Article  CAS  PubMed  Google Scholar 

  13. Riddiford, L. M., Cherbas, P., and Truman, J. W. (2000). Ecdysone receptors and their biological actions. Vitam Horm 60, 1–73.

    Article  CAS  PubMed  Google Scholar 

  14. Koelle, M. R., Talbot, W. S., Segraves, W. A., Bender, M. T., Cherbas, P., and Hogness, D. S. (1991). The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77.

    Article  CAS  PubMed  Google Scholar 

  15. Yao, T. P., Forman, B. M., Jiang, Z., Cherbas, L., Chen, J. D., McKeown, M., Cherbas, P., and Evans, R. M. (1993). Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479.

    Article  CAS  PubMed  Google Scholar 

  16. Costantino, B. F., Bricker, D. K., Alexandre, K., Shen, K., Merriam, J. R., Antoniewski, C., Callender, J. L., Henrich, V. C., Presente, A., and Andres, A. J. (2008). A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genet 4, e1000102.

    Article  PubMed  CAS  Google Scholar 

  17. Maestro, O., Cruz, J., Pascual, N., Martín, D., and Bellés, X. (2005). Differential expression of two RXR/ultraspiracle isoforms during the life cycle of the hemimetabolous insect Blattella germanica (Dictyoptera, Blattellidae). Mol Cell Endocrinol 238, 27–37.

    Article  CAS  PubMed  Google Scholar 

  18. Sullivan, A. A. and Thummel, C. S. (2003). Temporal profiles of nuclear receptor gene expression reveal coordinate transcriptional responses during Drosophila development. Mol Endocrinol 17, 2125–2137.

    Article  CAS  PubMed  Google Scholar 

  19. Karim, F. D. and Thummel, C. S. (1992). Temporal coordination of regulatory gene expression by the steroid hormone ecdysone. EMBO J 11, 4083–4093.

    CAS  PubMed  Google Scholar 

  20. Jindra, M. and Riddiford, L. M. (1996). Expression of ecdysteroid-regulated transcripts in the silk gland of the wax moth, Galleria mellonella. Dev Genes Evol 206, 305–314.

    Article  CAS  Google Scholar 

  21. Jindra, M., Malone, F., Hiruma, K., and Riddiford, L. M. (1996). Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Dev Biol 180, 258–272.

    Article  CAS  PubMed  Google Scholar 

  22. Jindra, M., Huang, J. Y., Malone, F., Asahina, M., and Riddiford, L. M. (1997). Identification and mRNA developmental profiles of two ultraspiracle isoforms in the epidermis and wings of Manduca sexta. Insect Mol Biol 6, 41–53.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S. F., Li, C., Zhu, J., Miura, K., Miksicek, R. J., and Raikhel, A. S. (2000). Differential expression and regulation by 20-hydroxyecdysone of mosquito ultraspiracle isoforms. Dev Biol 218, 99–113.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, S. F., Li, C., Sun, G., Zhu, J., and Raikhel, A. S. (2002). Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Mol CellEndocrinol 196, 29–42.

    Article  CAS  Google Scholar 

  25. Verras, M., Gourzi, P., Zacharopoulou, A., and Mintzas, A. C. (2002). Developmental profiles and ecdysone regulation of the mRNAs for two ecdysone receptor isoforms in the Mediterranean fruit fly Ceratitis capitata. Insect Mol Biol 11, 553–565.

    Article  CAS  PubMed  Google Scholar 

  26. Talbot, W. S., Swyryd, E. A., and Hogness, D. S. (1993). Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73, 1323–1337.

    Article  CAS  PubMed  Google Scholar 

  27. Henrich, V. C., Sliter, T. J., Lubahn, D. B., MacIntyre, A., and Gilbert, L. I. (1990). A steroid/thyroid hormone receptor superfamily member in Drosophila melanogaster that shares extensive sequence similarity with a mammalian homologue. Nucleic Acids Res 18, 4143–4148.

    Article  CAS  PubMed  Google Scholar 

  28. Oro, A. E., McKeown, M., and Evans, R. M. (1990). Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature 347, 298–301.

    Article  CAS  PubMed  Google Scholar 

  29. Kozlova, T. and Thummel, C. S. (2003). Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science 301, 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  30. Perrimon, N., Engstrom, L., and Mahowald, A. P. (1985). Developmental genetics of the 2C-D region of the Drosophila X chromosome. Genetics 111, 23–41.

    CAS  PubMed  Google Scholar 

  31. Davis, M. B., Carney, G. E., Robertson, A. E., and Bender, M. (2005). Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions during Drosophila development. Dev Biol 282, 385–396.

    Article  CAS  PubMed  Google Scholar 

  32. Schubiger, M., Wade, A. A., Carney, G. E., Truman, J. W., and Bender, M. (1998). Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. Development 125, 2053–2062.

    CAS  PubMed  Google Scholar 

  33. Bender, M., Imam, F. B., Talbot, W. S., Ganetzky, B., and Hogness, D. S. (1997). Drosophila ecdysone receptor mutations reveal functional differences among receptor isoforms. Cell 91, 777–788.

    Article  CAS  PubMed  Google Scholar 

  34. Hall, B. L. and Thummel, C. S. (1998). The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. Development 125, 4709–4717.

    CAS  PubMed  Google Scholar 

  35. Tan, A. and Palli, S. R. (2008b). Ecdysone [corrected] receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum. Mol Cell Endocrinol 291, 42–49.

    Article  CAS  PubMed  Google Scholar 

  36. Barchuk, A. R., Figueiredo, V. L., and Simões, Z. L. (2008). Downregulation of ultraspiracle gene expression delays pupal development in honeybees. J Insect Physiol 54, 1035–1040.

    Article  CAS  PubMed  Google Scholar 

  37. Cruz, J., Mané-Padrós, D., Bellés, X., and Martín, D. (2006). Functions of the ecdysone receptor isoform-A in the hemimetabolous insect Blattella germanica revealed by systemic RNAi in vivo. Dev Biol 297, 158–171.

    Article  CAS  PubMed  Google Scholar 

  38. Martín, D., Maestro, O., Cruz, J., Mané-Padrós, D., and Bellés, X. (2006). RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. J Insect Physiol 52, 410–416.

    Article  PubMed  CAS  Google Scholar 

  39. Sluder, A. E. and Maina, C. V. (2001). Nuclear receptors in nematodes: Themes and variations. Trends Genet 17, 206–213.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, C., Lamblin, A. F., Steller, H., and Thummel, C. S. (2000). A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5, 445–455.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, B., Hiruma, K., Jindra, M., Shinoda, T., Segraves, W. A., Malone, F., and Riddiford, L. M. (1998). Regulation of the transcription factor E75 by 20-hydroxyecdysone and juvenile hormone in the epidermis of the tobacco hornworm, Manduca sexta, during larval molting and metamorphosis. Dev Biol 193, 127–138.

    Article  CAS  PubMed  Google Scholar 

  42. Pierceall, W. E., Li, C., Biran, A., Miura, K., Raikhel, A. S., and Segraves, W. A. (1999). E75 expression in mosquito ovary and fat body suggests reiterative use of ecdysone-regulated hierarchies in development and reproduction. Mol Cell Endocrinol 150, 73–89.

    Article  CAS  PubMed  Google Scholar 

  43. Swevers, L., Eystathioy, T., and Iatrou, K. (2002). The orphan nuclear receptors BmE75A and BmE75C of the silkmoth Bombyx mori: Hornmonal control and ovarian expression. Insect Biochem Mol Biol 32, 1643–, 1652.

    Article  CAS  PubMed  Google Scholar 

  44. Dubrovsky, E. B., Dubrovskaya, V. A., and Berger, E. M. (2004). Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev Biol 268, 258–270.

    Article  CAS  PubMed  Google Scholar 

  45. Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W. A., and Thummel, C. S. (2002). Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Dev Cell 3, 209–220.

    Article  CAS  PubMed  Google Scholar 

  46. Mané-Padrós, D., Cruz, J., Vilaplana, L., Pascual, N., Bellés, X., and Martín, D. (2008). The nuclear hormone receptor BgE75 links molting and developmental progression in the direct-developing insect Blattella germanica. Dev Biol 315, 147–160.

    Article  PubMed  CAS  Google Scholar 

  47. Tan, A. and Palli, S. R. (2008a). Identification and characterization of nuclear receptors from the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38, 430–439.

    Article  CAS  PubMed  Google Scholar 

  48. White, K. P., Hurban, P., Watanabe, T., and Hogness, D. S. (1997). Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Science 276, 114–117.

    Article  CAS  PubMed  Google Scholar 

  49. Reinking, J., Lam, M. M., Pardee, K., Sampson, H. M., Liu, S., Yang, P., Williams, S., White, W., Lajoie, G., Edwards, A., and Krause, H. M. (2005). The Drosophila nuclear receptor E75 contains heme and is gas responsive. Cell 122, 195–207.

    Article  CAS  PubMed  Google Scholar 

  50. Guillaumond, F., Dardente, H., Giguère, V., and Cermakian, N. (2005). Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20, 391–403.

    Article  CAS  PubMed  Google Scholar 

  51. Gissendanner, C. R., Crossgrove, K., Kraus, K. A., Maina, C. V., and Sluder, A. E. (2004). Expression and function of conserved nuclear receptor genes in Caenorhabditis elegans. Dev Biol 266, 399–416.

    Article  CAS  PubMed  Google Scholar 

  52. Stone, B. L. and Thummel, C. S. (1993). The Drosophila 78C early late puff contains E78, an ecdysone-inducible gene that encodes a novel member of the nuclear hormone receptor superfamily. Cell 22, 307–320.

    Article  Google Scholar 

  53. Russell, S. R., Heimbeck, G., Goddard, C. M., Carpenter, A. T., and Ashburner, M. (1996). The Drosophila Eip78C gene is not vital but has a role in regulating chromosome puffs. Genetics 144, 159–170.

    CAS  PubMed  Google Scholar 

  54. Bryant, Z., Subrahmanyan, L., Tworoger, M., LaTray, L., Liu, C. R., Li, M. J., van den Neg, G., and Ruohola-Baker, H. (1999). Characterization of differentially expressed genes in purified Drosophila follicle cells: Toward a general strategy for cell type-specific developmental analysis. Proc Natl Acad Sci USA 96, 5559–5564.

    Article  CAS  PubMed  Google Scholar 

  55. Carmi, I., Kopczynski, J. B., and Meyer, B. J. (1998). The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 396, 168–173.

    Article  CAS  PubMed  Google Scholar 

  56. Palli, S. R., Hiruma, K., and Riddiford, L. M. (1992). An ecdysteroid-inducible Manduca gene similar to the Drosophila DHR3 gene, a member of the steroid hormone receptor superfamily. Dev Biol 150, 306–318.

    Article  CAS  PubMed  Google Scholar 

  57. Horner, M. A., Chen, T., and Thummel, C. (1995). Ecdysteroid regulation and DNA binding properties of Drosophila nuclear family members. Dev Biol 168, 490–502.

    Article  CAS  PubMed  Google Scholar 

  58. Kapitskaya, M. Z., Li, C., Miura, K., Segraves, W., and Raikhel, A. S. (2000). Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Mol Cell Endocrinol 160, 25–37.

    Article  CAS  PubMed  Google Scholar 

  59. Eystathioy, T., Swevers, L., and Iatrou, K. (2001). The orphan nuclear receptor BmHR3 of Bombyx mori: Hormonal control, ovarian expression and functional properties. Mech Dev 103, 107–115.

    Article  CAS  PubMed  Google Scholar 

  60. Cruz, J., Martin, D., and Belles, X. (2007). Redundant ecdysis regulatory functions of three nuclear receptor HR3 isoforms in the direct-developing insect Blattella germanica. Mech Dev 124, 180–189.

    Article  CAS  PubMed  Google Scholar 

  61. Palanker, L., Necakov, A. S., Sampson, H. M., Ni, R., Hu, C., Thummel, C. S., and Krause, H. M. (2006). Dynamic regulation of Drosophila nuclear receptor activity in vivo. Development 133, 3549–3562.

    Article  CAS  PubMed  Google Scholar 

  62. Kallen, J. A., Schlaeppi, J. M., Bitsch, F., Geisse, S., Geiser, M., Delhon, I., and Fournier, B. (2002). X-ray structure of the hRORalpha LBD at 1.63 A: Structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure 10, 1697– 1707.

    Article  CAS  PubMed  Google Scholar 

  63. Stehlin-Gaon, C., Willmann, D., Zeyer, D., Sanglier, S., Van Dorsselaer, A., Renaud, J. P., Moras, D., and Schüle, R. (2003). All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol 10, 820–825.

    Article  CAS  PubMed  Google Scholar 

  64. Carney, G. E., Wade, A. A., Sapra, R., Goldstein, E. S., and Bender, M. (1997). DHR3, an ecdysone-inducible early-late gene encoding a Drosophila nuclear receptor, is required for embryogenesis. Proc Natl Acad Sci USA 94, 12024–12029.

    Article  CAS  PubMed  Google Scholar 

  65. Lam, G., Hall, B. L., Bender, M., and Thummel, C. S. (1999). DHR3 is required for the prepupal-pupal transition and differentiation of adult structures during Drosophila metamorphosis. Dev Biol 212, 204–216.

    Article  CAS  PubMed  Google Scholar 

  66. Kostrouchova, M., Krause, M., Kostrouch, Z., and Rall, J. E. (2001). Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 98, 7360–7365.

    Article  CAS  PubMed  Google Scholar 

  67. Lam, G. T., Jiang, C., and Thummel, C. S. (1997). Coordination of larval and prepupal gene expression by the DHR3 orphan receptor during Drosophila metamorphosis. Development 124, 1757–1769.

    CAS  PubMed  Google Scholar 

  68. Cruz, J., Nieva, C., Mané-Padrós, D., Martín, D., and Bellés, X. (2008). Nuclear receptor BgFTZ-F1 regulates molting and the timing of ecdysteroid production during nymphal development in the hemimetabolous insect Blattella germanica. Dev Dyn 237, 3179–3191.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Y. and Dufau, M. L. (2004). Gene silencing by nuclear orphan receptors. Vitam Horm 68, 1–48.

    Article  CAS  PubMed  Google Scholar 

  70. Hiruma, K. and Riddiford, L. M. (2001). Regulation of transcription factors MHR4 and betaFTZ-F1 by 20-hydroxyecdysone during a larval molt in the tobacco hornworm, Manduca sexta. Dev Biol 232, 265–274.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, J. H., Turner, P. C., and Rees, H. H. (2002). Molecular cloning and induction of nuclear receptors from insect cell lines. Insect Biochem Mol Biol 32, 657–667.

    Article  CAS  PubMed  Google Scholar 

  72. King-Jones, K., Charles, J. P., Lam, G., and Thummel, C. S. (2005). The ecdysone-induced DHR4 orphan nuclear receptor coordinates growth and maturation in Drosophila. Cell 121, 773–784.

    Article  CAS  PubMed  Google Scholar 

  73. Charles, J. P., Shinoda, T., and Chinzei, Y. (1999). Characterization and DNA-binding properties of GRF, a novel monomeric binding orphan receptor related to GCNF and betaFTZ-F1. Eur J Biochem 266, 181–190.

    Article  CAS  PubMed  Google Scholar 

  74. Mouillet, J. F., Bousquet, F., Sedano, N., Alabouvette, J., Nicolaï, M., Zelus, D., Laudet, V., and Delachambre, J. (1999). Cloning and characterization of new orphan nuclear receptors and their developmental profiles during Tenebrio metamorphosis. Eur J Biochem 265, 972–981.

    Article  CAS  PubMed  Google Scholar 

  75. Weller, J., Sun, G. C., Zhou, B., Lan, Q., Hiruma, K., and Riddiford, L. M. (2001). Isolation and developmental expression of two nuclear receptors, MHR4 and betaFTZ-F1, in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 31, 827–837.

    Article  CAS  PubMed  Google Scholar 

  76. Bourbon, H. M., Gonzy-Treboul, G., Peronnet, F., Alin, M. F., Ardourel, C., Benassayag, C., Cribbs, D., Deutsch, J., Ferrer, P., Haenlin, M., Lepesant, J. A., Noselli, S., and Vincent, A. (2002). A P-insertion screen identifying novel X-linked essential genes in Drosophila. Mech Dev 110, 71–83.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, Z., Fang, L. L., Johnsen, R., and Baillie, D. L. (2004). ATP-binding cassette protein E is involved in gene transcription and translation in Caenorhabditis elegans. Biochem Biophys Res Commun 323, 104–111.

    Article  CAS  PubMed  Google Scholar 

  78. Li, L. -A., Chiang, E. F.-L., Chen, J.-C., Hsu, N.-C., Chen, Y.-J., and Chung, B.-C. (1999). Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol 13, 1588–1598.

    Article  CAS  PubMed  Google Scholar 

  79. Ueda, H., Sun, G.-C., Murata, T., and Hirose, S. (1992). A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12, 5667–5672.

    CAS  PubMed  Google Scholar 

  80. Guichet, A., Copeland, J. W., Erdélyi, M., Hlousek, D., Závorszky, P., Ho, J., Brown, S., Percival-Smith, A., Krause, H. M., and Ephrussi, A. (1997). The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 385, 548–552.

    Article  CAS  PubMed  Google Scholar 

  81. Yu, Y., Li, W., Su, K., Yussa, M., Han, W., Perrimon, N., and Pick, L. (1997). The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385, 552– 555.

    Article  CAS  PubMed  Google Scholar 

  82. Alonso, C. R., Maxton-Kuechenmeister, J., and Akam, M. (2001). Evolution of Ftz protein function in insects. Curr Biol 11, 1473–1478.

    Article  CAS  PubMed  Google Scholar 

  83. Löhr, U., Yussa, M., and Pick, L. (2001). Drosophila fushi tarazu. A gene on the border of homeotic function. Curr Biol 11, 1403–1412.

    Article  PubMed  Google Scholar 

  84. Ueda, H., Sonoda, S., Brown, J. L., Scott, M. P., and Wu, C. (1990). A sequence-specific DNA-binding protein that activates fushi tarazu segmentation gene expression. Genes Dev 4, 624– 635.

    Article  CAS  PubMed  Google Scholar 

  85. Yamada, M., Murata, T., Hirose, S., Lavorgna, G., Suzuki, E., and Ueda, H. (2000). Temporally restricted expression of transcription factor betaFTZ-F1: Significance for embryogenesis, molting and metamorphosis in Drosophila melanogaster. Development 127, 5083–5092.

    CAS  PubMed  Google Scholar 

  86. Sun, G. C., Hirose, S., and Ueda, H. (1994). Intermittent expression of BmFTZ-F1, a member of the nuclear hormone receptor superfamily during development of the silkworm Bombyx mori. Dev Biol 162, 426–437.

    Article  CAS  PubMed  Google Scholar 

  87. Li, C., Kapitskaya, M. Z., Zhu, J., Miura, K., Segraves, W., and Raikhel, A. S. (2000). Conserved molecular mechanism for the stage specificity of the mosquito vitellogenic response to ecdysone. Dev Biol 224, 96–110.

    Article  CAS  PubMed  Google Scholar 

  88. Broadus, J., McCabe, J. R., Endrizzi, B., Thummel, C. S., and Woodard, C. T. (1999). The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol Cell 3, 143–149.

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, J., Chen, L., and Raikhel, A. S. (2003a). Posttranscriptional control of the competence factor βFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 100, 13338–13343.

    Article  CAS  PubMed  Google Scholar 

  90. Zhu, J., Miura, K., Chen, L., and Raikhel, A. S. (2003b). Cyclicity of mosquito vitellogenic ecdysteroid-mediated signaling is modulated by alternative dimerization of the RXR homologue ultraspiracle. Proc Natl Acad Sci USA 100, 544–549.

    Article  CAS  PubMed  Google Scholar 

  91. Gilbert, L. I. (2004). Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215, 1–10.

    Article  CAS  PubMed  Google Scholar 

  92. Asahina, M., Ishihara, T., Jindra, M., Kohara, Y., Katsura, I., and Hirose, S. (2000). The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans. Genes Cells 5, 711–723.

    Article  CAS  PubMed  Google Scholar 

  93. Gissendanner, C. R. and Sluder, A. E. (2000). nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol 221, 259–272.

    Article  CAS  PubMed  Google Scholar 

  94. De Mendonça, R. L., Bouton, D., Bertin, B., Escriva, H., Noël, C., Vanacker, J. M., Cornette, J., Laudet, V., and Pierce, R. J. (2002). A functionally conserved member of the FTZ-F1 nuclear receptor family from Schistosoma mansoni. Eur J Biochem 269, 5700–5711.

    Article  PubMed  CAS  Google Scholar 

  95. Huet, F., Ruiz, C., and Richards, G. (1995). Sequential gene activation by ecdysone in Drosophila melanogaster: The hierarchical equivalence of early and early late genes. Development 121, 1195–1204.

    CAS  PubMed  Google Scholar 

  96. Ayer, S., Walker, N., Mosammaparast, M., Nelson, J. P., Shilo, B. Z., and Benyajati, C. (1993). Activation and repression of Drosophila alcohol dehydrogenase distal transcription by two steroid hormone receptor superfamily members binding to a common response element. Nucleic Acids Res 21, 1619–1627.

    Article  CAS  PubMed  Google Scholar 

  97. Ohno, C. K., Ueda, H., and Petkovich, M. (1994). The Drosophila nuclear receptors FTZ-F1 alpha and FTZ-F1 beta compete as monomers for binding to a site in the fushi tarazu gene. Mol Cell Biol 14, 3166–3175.

    CAS  PubMed  Google Scholar 

  98. Horner, M. and Thummel, C. S. (1997). Mutations in the DHR39 orphan receptor gene havno ee ffect on viability. Dros Info Serv 80, 35–37.

    Google Scholar 

  99. Allen, A. K. and Spradling, A. C. (2008). The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 135, 311–321.

    Article  CAS  PubMed  Google Scholar 

  100. Fisk, G. J. and Thummel, C. S. (1995). Isolation, regulation, and DNA-binding properties of three Drosophila nuclear hormone receptor superfamily members. Proc Natl Acad Sci USA 92, 10604–10608.

    Article  CAS  PubMed  Google Scholar 

  101. Zelhof, A. C., Yao, T. P., Evans, R. M., and McKeown, M. (1995b). Identification and characterization of a Drosophila nuclear receptor with the ability to inhibit the ecdysone response. Proc Natl Acad Sci USA 92, 10477–10481.

    Article  CAS  PubMed  Google Scholar 

  102. Hirai, M., Shinoda, T., Kamimura, M., Tomita, S., and Shiotsuki, T. (2002). Bombyx mori orphan receptor, BmHR78: cDNA cloning, testis abundant expression and putative dimerization partner for Bombyx ultraspiracle. Mol Cell Endocrinol 189, 201–211.

    Article  CAS  PubMed  Google Scholar 

  103. Fisk, G. J. and Thummel, C. S. (1998). The DHR78 nuclear receptor is required for ecdysteroid signaling during the onset of Drosophila metamorphosis. Cell 93, 543–555, Genetics 144, 159–170.

    Article  CAS  PubMed  Google Scholar 

  104. Astle, J., Kozlova, T., and Thummel, C. S. (2003). Essential roles for the Dhr78 orphan nuclear receptor during molting of the Drosophila tracheal system. Insect Biochem Mol Biol 33, 1201–1209.

    Article  CAS  PubMed  Google Scholar 

  105. Baker, K. D., Beckstead, R. B., Mangelsdorf, D. J., and Thummel, C. S. (2007). Functional interactions between the Moses corepressor and DHR78 nuclear receptor regulate growth in Drosophila. Genes Dev 21, 450–464.

    Article  CAS  PubMed  Google Scholar 

  106. Collins, L. L., Lee, Y. F., Heinlein, C. A., Liu, N. C., Chen, Y. T., Shyr, C. R., Meshul, C. K., Uno, H., Platt, K. A., and Chang, C. (2004). Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci USA 101, 15058–15063.

    Article  CAS  PubMed  Google Scholar 

  107. Sutherland, J. D., Kozlova, T., Tzertzinis, G., and Kafatos, F. C. (1995). Drosophila hormone receptor 38: A second partner for Drosophila USP suggests an unexpected role for nuclear receptors of the nerve growth factor-induced protein B type. Proc Natl Acad Sci USA 92, 7966–7970.

    Article  CAS  PubMed  Google Scholar 

  108. Kozlova, T., Pokholkova, G. V., Tzertzinis, G., Sutherland, J. D., Zhimulev, I. F., and Kafatos, F. C. (1998). Drosophila hormone receptor 38 functions in metamorphosis: A role in adult cuticle formation. Genetics 149, 1465–1475.

    CAS  PubMed  Google Scholar 

  109. Crispi, S., Giordano, E., D‘Avino, P. P., and Fúria, M. (1998). Cross-talking among Drosophila nuclear receptors at the promiscuous response element of the ng-1 and ng-2 intermolt genes. J Mol Biol 275, 561–574.

    Article  CAS  PubMed  Google Scholar 

  110. Zhu, J., Miura, K., Chen, L., and Raikhel, A. S. (2000). AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. EMBO J 19, 253–262.

    Article  CAS  PubMed  Google Scholar 

  111. Baker, K. D., Shewchuk, L. M., Kozlova, T., Makishima, M., Hassell, A., Wisely, B., Caravella, J. A., Lambert, M. H., Reinking, J. L., Krause, H., Thummel, C. S., Willson, T. M., and Mangelsdorf, D. J. (2003). The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 113, 731–742.

    Article  CAS  PubMed  Google Scholar 

  112. Wang, Z., Benoit, G., Liu, J., Prasad, S., Aarnisalo, P., Liu, X., Xu, H., Walter, N. P., and Perlmann, T. (2003). Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560.

    Article  CAS  PubMed  Google Scholar 

  113. Bruey-Sedano, N., Alabouvette, J., Lestradet, M., Hong, L., Girard, A., Gervasio, E., Quennedey, B., and Charles, J. P. (2005). The Drosophila ACP65A cuticle gene: Deletion scanning analysis of cis-regulatory sequences and regulation by DHR38. Genesis 43, 17–27.

    Article  CAS  PubMed  Google Scholar 

  114. Davis, M. M., Yang, P., Chen, L., O’Keefe, S. L., and Hodgetts, R. B. (2007). The orphan nuclear receptor DHR38 influences transcription of the DOPA decarboxylase gene in epidermal and neural tissues of Drosophila melanogaster. Genome 50, 1049–1060.

    Article  CAS  PubMed  Google Scholar 

  115. Kozlova, T., Lam, G., and Thummel, C. S. (2009). Drosophila DHR38 nuclear receptor is required for adult cuticle integrity at eclosion. Dev Dyn 238, 701–707.

    Article  CAS  PubMed  Google Scholar 

  116. Mlodzik, M., Hiromi, Y., Weber, U., Goodman, C. S., and Rubin, G. M. (1990). The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60, 211–224.

    Article  CAS  PubMed  Google Scholar 

  117. Broadus, J. and Doe, C. Q. (1995). Evolution of neuroblast identity: Seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121, 3989–3996.

    CAS  PubMed  Google Scholar 

  118. Miura, K., Zhu, J., Dittmer, N. T., Chen, L., and Raikhel, A. S. (2002). A COUP-TF/Svp homolog is highly expressed during vitellogenesis in the mosquito Aedes aegypti. J Mol Endocrinol 29, 223–238.

    Article  CAS  PubMed  Google Scholar 

  119. Zelhof, A. C., Yao, T. P., Chen, J. D., Evans, R. M., and McKeown, M. (1995a). Seven-up inhibits ultraspiracle-based signaling pathway in vitro and in vivo. Mol Cell Biol 15, 6736–6745.

    CAS  PubMed  Google Scholar 

  120. Hiromi, Y., Mlodzik, M., West, S. R., Rubin, G. M., and Goodman, C. S. (1993). Ectopic expression of seven-up causes cell fate changes during ommatidial assembly. Development 118, 1123–1135.

    CAS  PubMed  Google Scholar 

  121. Hoshizaki, D. K., Blackburn, T., Price, C., Ghosh, M., Miles, K., Ragucci, M., and Sweis, R. (1994). Embryonic fat-cell lineage in Drosophila melanogaster. Development 120, 2489–2499.

    CAS  PubMed  Google Scholar 

  122. Kerber, B., Fellert, S., and Hoch, M. (1998). Seven-up, the Drosophila homolog of the COUP-TF orphan receptors, controls cell proliferation in the insect kidney. Genes Dev 12, 1781–1786.

    Article  CAS  PubMed  Google Scholar 

  123. Lo, P. C. and Frasch, M. (2001). A role for the COUP-TF-related gene seven-up in the diversification of cardioblast identities in the dorsal vessel of Drosophila. Mech Dev 104, 49–60.

    Article  CAS  PubMed  Google Scholar 

  124. Sudarsan, V., Pasalodos-Sanchez, S., Wan, S., Gampel, A., and Skaer, H. (2002). A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development 129, 935–944.

    CAS  PubMed  Google Scholar 

  125. Maurange, C., Cheng, L., and Gould, A. P. (2008). Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891–902.

    Article  CAS  PubMed  Google Scholar 

  126. Ahn, J. E., Guarino, L. A., and Zhu-Salzman, K. (2007). Seven-up facilitates insect counter-defense by suppressing cathepsin B expression. FEBS J 274, 2800–2814.

    Article  CAS  PubMed  Google Scholar 

  127. Zhou, H. M. and Walthall, W. W. (1998). UNC-55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans. J Neurosci 18, 10438–10444.

    CAS  PubMed  Google Scholar 

  128. King-Jones, K., Horner, M. A., Lam, G., and Thummel, C. S. (2006). The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 4, 37–48.

    Article  CAS  PubMed  Google Scholar 

  129. Lindblom, T. H., Pierce, G. J., and Sluder, A. E. (2001). A C. elegans orphan nuclear receptor contributes to xenobiotic resistance. Curr Biol 11, 864–868.

    Article  CAS  PubMed  Google Scholar 

  130. Magner, D. B. and Antebi, A. (2008). Caenorhabditis elegans nuclear receptors: Insights into life traits. Trends Endocrinol Metab 19, 153–160.

    Article  CAS  PubMed  Google Scholar 

  131. Zhong, W., Sladek, F. M., and Darnell, J. E., Jr. (1993). The expression pattern of a Drosophila homolog to the mouse transcription factor HNF-4 suggests a determinative role in gut formation. EMBO J 12, 537–544.

    CAS  PubMed  Google Scholar 

  132. Sladeck, F. M. (1994). In Tronche, F., Yaniv, M., eds., Transcriptional regulation of liver-specific genes. R.G. Landes Co, Austin, TX, 207–230.

    Google Scholar 

  133. Swevers, L. and Iatrou, K. (1998). The orphan receptor BmHNF-4 of the silkmoth Bombyx mori: Ovarian and zygotic expression of two mRNA isoforms encoding polypeptides with different activating domains. Mech Dev 72, 3–13.

    Article  CAS  PubMed  Google Scholar 

  134. Kapitskaya, M. Z., Dittmer, N. T., Deitsch, K. W., Cho, W. L., Taylor, D. G., Leff, T., and Raikhel, A. S. (1998). Three isoforms of a hepatocyte nuclear factor-4 transcription factor with tissue- and stage-specific expression in the adult mosquito. J Biol Chem 273, 29801–29810.

    Article  CAS  PubMed  Google Scholar 

  135. Palanker, L., Tennessen, J. M., Lam, G., and Thummel, C. S. (2009). Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab 9, 228–239.

    Article  CAS  PubMed  Google Scholar 

  136. Dhe-Paganon, S., Duda, K., Iwamoto, M., Chi, Y. I., and Shoelson, S. E. (2002). Crystal structure of the HNF4 alpha ligand binding domain in complex with endogenous fatty acid ligand. J Biol Chem 277, 37973–37976.

    Article  CAS  PubMed  Google Scholar 

  137. Hayhurst, G. P., Lee, Y. H., Lambert, G., Ward, J. M., and Gonzalez, F. J. (2001). Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21, 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  138. Van Gilst, M. R., Hadjivassiliou, H., Jolly, A., and Yamamoto, K. R. (2005). Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3, e53.

    Article  PubMed  CAS  Google Scholar 

  139. Pankratz, M. J. and Jackle, H. (1993). Blastoderm segmentation. In Bate, M., Martinez-Arias, A., (ed.), The development of Drosophila melanogaster. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY.

    Google Scholar 

  140. Casanova, J. (1990). Pattern formation under the control of the terminal system in the Drosophila embryo. Development 110, 621–628.

    CAS  PubMed  Google Scholar 

  141. Pignoni, F., Baldarelli, R. M., Steingrímsson, E., Diaz, R. J., Patapoutian, A., Merriam, J. R., and Lengyel, J. A. (1990). The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62, 151–163.

    Article  CAS  PubMed  Google Scholar 

  142. Strecker, T. R., Merriam, J. R., and Lengyel, J. A. (1988). Graded requirement for the zygotic terminal gene, tailless, in the brain and tail region of the Drosophila embryo. Development 102, 721–734.

    CAS  PubMed  Google Scholar 

  143. Younossi-Hartenstein, A., Green, P., Liaw, G. J., Rudolph, K., Lengyel, J., and Hartenstein, V. (1997). Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol 182, 270–283.

    Article  CAS  PubMed  Google Scholar 

  144. Steingrímsson, E., Pignoni, F., Liaw, G. J., and Lengyel, J. A. (1991). Dual role of the Drosophila pattern gene tailless in embryonic termini. Science 254, 418–421.

    Article  PubMed  Google Scholar 

  145. Pankratz, M. J., Hoch, M., Seifert, E., and Jäckle, H. (1989). Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature 341, 337–340.

    Article  CAS  PubMed  Google Scholar 

  146. Weigel, D., Jürgens, G., Küttner, F., Seifert, E., and Jäckle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645–658.

    Article  CAS  PubMed  Google Scholar 

  147. Kraut, R. and Levine, M. (1991). Spatial regulation of the gap gene giant during Drosophila development. Development 111, 601–609.

    CAS  PubMed  Google Scholar 

  148. Kispert, A., Herrmann, B. G., Leptin, M., and Reuter, R. (1994). Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev 8, 2137–2150.

    Article  CAS  PubMed  Google Scholar 

  149. Margolis, J. S., Borowsky, M. L., Steingrímsson, E., Shim, C. W., Lengyel, J. A., and Posakony, J. W. (1995). Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. Development 121, 3067–3077.

    CAS  PubMed  Google Scholar 

  150. Morán, E. and Jiménez, G. (2006). The tailless nuclear receptor acts as a dedicated repressor in the early Drosophila embryo. Mol Cell Biol 26, 3446–3454.

    Article  PubMed  CAS  Google Scholar 

  151. Schröder, R., Eckert, C., Wolff, C., and Tautz, D. (2000). Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc Natl Acad Sci USA 97, 6591–6596.

    Article  PubMed  Google Scholar 

  152. Rudolph, K. M., Liaw, G. J., Daniel, A., Green, P., Courey, A. J., Hartenstein, V., and Lengyel, J. A. (1997). Complex regulatory region mediating tailless expression in early embryonic patterning and brain development. Development 124, 4297–4308.

    CAS  PubMed  Google Scholar 

  153. Daniel, A., Dumstrei, K., Lengyel, J. A., and Hartenstein, V. (1999). The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126, 2945–2954.

    CAS  PubMed  Google Scholar 

  154. Land, P. W. and Monaghan, A. P. (2003). Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex 13, 921–931.

    Article  CAS  PubMed  Google Scholar 

  155. Pitman, J. L., Tsai, C. C., Edeen, P. T., Finley, K. D., Evans, R. M., and McKeown, M. (2002). DSF nuclear receptor acts as a repressor in culture and in vivo. Dev Biol 245, 315–328.

    Article  CAS  PubMed  Google Scholar 

  156. Finley, K. D., Edeen, P. T., Foss, M., Gross, E., Ghbeish, N., Palmer, R. H., Taylor, B. J., and McKeown, M. (1998). Dissatisfaction encodes a tailless-like nuclear receptor expressed in a subset of CNS neurons controlling Drosophila sexual behavior. Neuron 21, 1363–1374.

    Article  CAS  PubMed  Google Scholar 

  157. Finley, K. D., Taylor, B. J., Milstein, M., and McKeown, M. (1997). Dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila melanogaster. Proc Natl Acad Sci USA 94, 913–918.

    Article  CAS  PubMed  Google Scholar 

  158. Sung, C., Wong, L. E., Chang, S. L. Q., Nguyen, E., Lazaga, N., Ganzer, G., McNabb, S. L., and Robinow, S. (2009). The unfulfilled/DHR51 gene of Drosophila melanogaster modulates wing expansion and fertility. Dev Dyn 238, 171–182.

    Article  CAS  PubMed  Google Scholar 

  159. de Rosny, E., de Groot, A., Jullian-Binard, C., Borel, F., Suarez, C., Le Pape, L., Fontecilla-Camps, J. C., and Jouve, H. M. (2008). DHR51, the Drosophila melanogaster homologue of the human photoreceptor cell-specific nuclear receptor, is a thiolate heme-binding protein. Biochemistry 47, 13252–13260.

    Article  PubMed  CAS  Google Scholar 

  160. Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K., and Umesono, K. (1999). Identification of a photoreceptor cell-specific nuclear receptor. Proc Natl Acad Sci USA 96, 4814–4819.

    Article  CAS  PubMed  Google Scholar 

  161. Haider, N. B., Jacobson, S. G., Cideciyan, A. V., Swiderski, R., Streb, L. M., Searby, C., Beck, G., Hockey, R., Hanna, D. B., Gorman, S., Duhl, D., Carmi, R., Bennett, J., Weleber, R. G., Fishman, G. A., Wright, A. F., Stone, E. M., and Sheffield, V. C. (2000). Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 24, 127–131.

    Article  CAS  PubMed  Google Scholar 

  162. Much, J. W., Slade, D. J., Klampert, K., Garriga, G., and Wightman, B. (2000). The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development 127, 703–712.

    CAS  PubMed  Google Scholar 

  163. Nauber, U., Pankratz, M. J., Kienlin, A., Seifert, E., Klemm, U., and Jäckle, H. (1988). Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature 336, 489–492.

    Article  CAS  PubMed  Google Scholar 

  164. Chen, C. K., Kühnlein, R. P., Eulenberg, K. G., Vincent, S., Affolter, M., and Schuh, R. (1998). The transcription factors KNIRPS and KNIRPS RELATED control cell migration and branch morphogenesis during Drosophila tracheal development. Development 125, 4959–4968.

    CAS  PubMed  Google Scholar 

  165. González-Gaitán, M., Rothe, M., Wimmer, E. A., Taubert, H., and Jäckle, H. (1994). Redundant functions of the genes knirps and knirps-related for the establishment of anterior Drosophila head structures. Proc Natl Acad Sci USA 91, 8567–8571.

    Article  PubMed  Google Scholar 

  166. Cerny, A. C., Grossmann, D., Bucher, G., and Klingler, M. (2008). The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. Dev Biol 321, 284–294.

    Article  CAS  PubMed  Google Scholar 

  167. Higashijima, S., Shishido, E., Matsuzaki, M., and Saigo, K. (1996). Eagle, a member of the steroid receptor gene superfamily, is expressed in a subset of neuroblasts and regulates the fate of their putative progeny in the Drosophila CNS. Development 122, 527–536.

    CAS  PubMed  Google Scholar 

  168. Rothe, M., Nauber, U., and Jäckle, H. (1989). Three hormone receptor-like Drosophila genes encode an identical DNA-binding finger. EMBO J 8, 3087–3094.

    CAS  PubMed  Google Scholar 

  169. Lundell, M. J. and Hirsh, J. (1998). Eagle is required for the specification of serotonin neurons and other neuroblast 7-3 progeny in the Drosophila CNS. Development 125, 463–472.

    CAS  PubMed  Google Scholar 

  170. Ruau, D., Duarte, J., Ourjdal, T., Perrière, G., Laudet, V., and Robinson-Rechavi, M. (2004). Update of NUREBASE: Nuclear hormone receptor functional genomics. Nucleic Acids Res 32(Database issue), D165–D167.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank to all members of my laboratory for their work and critical comments on the manuscript. I also want to aopologize to authors whose work has not been cited owing to length restrictions. Research in the lab is supported by the Spanish Ministry of Education and Science (projects BMC2002-03222 and BFU2006-13212) and the Generalitat de Catalunya (2001 SGR 003245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David MartÍn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

MartÍn, D. (2010). Functions of Nuclear Receptors in Insect Development. In: Bunce, C., Campbell, M. (eds) Nuclear Receptors. Proteins and Cell Regulation, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3303-1_3

Download citation

Publish with us

Policies and ethics