Skip to main content

Heat Transfer and Phase Transition in DTA Experiments

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

Abstract

Early principles of thermometry (Šesták J, Mareš JJ, From caloric to statmograph and polarography. J Therm Anal Calorm 88:3–9, 2007; Proks I, Evaluation of the knowledge of phase equilibria. In: Chvoj Z, Šesták J, Tříska A (eds) Kinetic phase diagrams: nonequilibrium phase transformations. Elsevier, Amsterdam, pp 1–60, 1991; Proks I, Celok je jednoduchší ako jeho časti (Whole is simpler than its parts). Publishing house of Slovak Academy of Sciences, Bratislava (in Slovak), 2011) were already established by Galileo Galilei (1564–1642), whose idea was to make use of the volume changes of gases while observing the accompanying changes in thermal state of given bodies (air thermometer). The first liquid thermometer was likely constructed by J. Rey in 1631, and the description of the mercury thermometer is ascribed to Daniel G. Fahrenheit in 1724. The elaboration of the earliest ice calorimeter is credited to A.L. Lavoisier and Pierre S. Laplace around 1790 (Lavoisier LA, Laplace PS, Presentation of a new means for measuring heat as the first chapter of their book “Mémoire sur la Chaleur”, Paris, 1783; Thenard L, Treatise of chemistry, 6th edn. Crochard, Paris, 1836), coining the term from the Latin “calor” and the Greek “meter.” Sourced on the work by B. Telesio (1509–1588) (Telesio B, De Rerum Natura Iuxta Propria Principia, 1565), Jan A. Comenius (1592–1670) (Comenius JA, Physicae synopsis, Leipzig, 1633; Disquisitiones de Caloris et Frigoris Natura, Amsterdam, 1659) made use of the term “caloric” when describing the importance of concepts of cold and warm (Šesták J, Mareš JJ, From caloric to statmograph and polarography. J Therm Anal Calorm 88:3–9, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Šesták J, Mareš JJ (2007) From caloric to statmograph and polarography. J Therm Anal Calorm 88:3–9

    Article  Google Scholar 

  2. Proks I (1991) Evaluation of the knowledge of phase equilibria. In: Chvoj Z, Šesták J, Tříska A (eds) Kinetic phase diagrams: nonequilibrium phase transformations. Elsevier, Amsterdam, pp 1–60

    Google Scholar 

  3. Proks I (2011) Celok je jednoduchší ako jeho časti (Whole is simpler than its parts). Publishing house of Slovak Academy of Sciences, Bratislava (in Slovak); Proks I (1961) Influence of temperature increase rate on the quantities important for evaluation DTA curves. Silikaty (Prague) 1:114–121 (in Czech)

    Google Scholar 

  4. Lavoisier LA, Laplace PS (1783) Presentation of a new means for measuring heat as the first chapter of their book “Mémoire sur la Chaleur”, Paris

    Google Scholar 

  5. Thenard L (1836) Treatise of chemistry, 6th edn. Crochard, Paris

    Google Scholar 

  6. Telesio B (1565) De Rerum Natura Iuxta Propria Principia, Libri IX, Roma

    Google Scholar 

  7. Comenius JA (1633) Physicae synopsis, Leipzig; (1659) Disquisitiones de Caloris et Frigoris Natura, Amsterdam

    Google Scholar 

  8. Kelland P (1837) Theory of heat. Cambridge University Press, London

    Google Scholar 

  9. Thompsen J (1886) Thermochemische Untersuchugen, Leipzig

    Google Scholar 

  10. Berthelot M (1905) Traite Practique de Calorimetrie Chimique, Gauthier-Villars et fils, G. Masson, Paris

    Google Scholar 

  11. Nernst W (1918) Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes. W. Knapp, Halle

    Google Scholar 

  12. Swietoslawski W (1933) Thermochemie, Alcan, Paris; (1946) Microcalorimetry. Reinhold, New York

    Google Scholar 

  13. Tian A (1923) Utilisation de la méthode calorimétrique en dynamique chimique: emploi d’un microcalorimètre à compensation. Bull Soc Chim Fr 33:427–428; (1933) Recherches sur la calorimétrie – Généralisation de la méthode de compensation électrique-Microcalorimétrie. J Chim Phys 30:665–708

    Google Scholar 

  14. Calvet E, Prat H (1956) Microcalorimetrie. Masson, Paris

    Google Scholar 

  15. Velíšek J (1978) Calorimetric methods. Chemické listy 72:801–830; (1970) High-temperature calorimetry. Čs čas fyz A 20:513 (both in Czech)

    Google Scholar 

  16. Šesták J (1984) Měření termofyzikálních vlastností pevných látek. Academia, Praha; English trans. Thermophysical properties of solids. Elsevier, Amsterdam, Russian trans: (1988) Teoreticheskiy termicheskiy analiz. Mir, Moscow

    Google Scholar 

  17. Osmond F (1888) Transformations du fer et du carbon dans les fers, les aciers et les fontes blanches, Baudonin et Co., Paris

    Google Scholar 

  18. Roberts-Austen WC (1899) Fifth report to the Alloys Research Committee. Nature 59:566–567; (1899) Proc Inst Mech Eng 35

    Google Scholar 

  19. Kurnakov NS (1904) Eine neue Form des Registrierpyrometers. Z Anorg Chem 42:184–202; (1954) Raboty v oblasti cvetnoj metalurgii. Gos Nautsh Tech Izd, Moskva 104

    Google Scholar 

  20. Tammann G (1905) Über die Anwendung der thermischen Analysen in abnormen Fällen. Z Anorg Chem 45:24–30

    Article  Google Scholar 

  21. Burgess GK (1908) Methods of obtaining cooling curves. Bull Bur Stand 5(S99):199–225

    Google Scholar 

  22. White WP (1909) Melting point determination. Am J Sci 28:453–473

    Article  Google Scholar 

  23. Newton I (1701) Scale graduum Caloris. Calorum descriptiones & signa. Philos Trans 22:824–829

    Google Scholar 

  24. Fourier JB (1822) Theorie analytique de la chaleur. F. Didot, Paris

    Google Scholar 

  25. Norton FH (1939) Critical study of the differential thermal methods for the identification of the clay minerals. J Am Ceram Soc 22:54–84

    Article  CAS  Google Scholar 

  26. Vold MJ (1949) Differential thermal analysis-DTA. Anal Chem 21:683–8

    Article  CAS  Google Scholar 

  27. Sykes C (1935) Methods for investigating thermal changes occurring during transformations in solids. Proc R Soc (Lond) 148A:422–429

    Article  Google Scholar 

  28. Smyth HT (1951) Temperature distribution during mineral inversion and its significance in DTA. J Am Ceram Soc 34:221–224

    Article  CAS  Google Scholar 

  29. Boersma SL (1955) A theory of DTA and new methods of measurement and interpretation. J Am Ceram Soc 38:281–284

    Article  CAS  Google Scholar 

  30. Pask JA, Warner MF (1954) Differential thermal analysis methods and techniques. Bull Am Ceram Soc 33:168–175

    CAS  Google Scholar 

  31. Murray P, White J (1949) Kinetics of the thermal dehydration of clays. Trans Br Ceram Soc 48:187–206

    CAS  Google Scholar 

  32. Borchard HJ (1956) Differential thermal analysis. J Chem Educ 33:103–109; Borchard HJ, Daniels F (1957) The application of DTA to the study of reaction kinetics. J Am Chem Soc 79:41–46

    Google Scholar 

  33. Berg G (1952) Rapid quantitative phase analysis. Acad Nauk, Moscow (in Russian)

    Google Scholar 

  34. Mackenzie RC (ed) (1957) The differential thermal investigation of clays. Mineralogical Society, London

    Google Scholar 

  35. Eliášek M, Šťovík M, Zahradník L (1957) Differential thermal analysis. Academia, Praha (in Czech)

    Google Scholar 

  36. Garn PD (1961) Thermal analysis: a critique. Anal Chem 33:1247–1255; (1965) Thermal analysis of investigation. Academic, New York

    Google Scholar 

  37. Piloyan FO (1964) Vedeniye v termografiyu (Introduction to thermography). Nauka, Moskva (in Russian)

    Google Scholar 

  38. Smothers WJ, Chiang Y (1966) Handbook of DTA. Chemical Publishing, New York

    Google Scholar 

  39. Schultze D (1969) Differential thermoanalyze. VEB, Berlin

    Google Scholar 

  40. Mackenzie RC (ed) (1970, 1972)) Differential thermal analysis, vols I and II. Academic, London

    Google Scholar 

  41. Šesták J, Berggren G (1970) Use of DTA for enthalpic and kinetic measurements. Chemicke Listy 64:695–71 (in Czech)

    Google Scholar 

  42. Šesták J (1979) Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197–227

    Article  Google Scholar 

  43. Boerio-Goates J, Callen JE (1992) Differential thermal methods. In: Rossiter BW, Beatzold RC (eds) Determination of thermodynamic properties. Wiley, New York, pp 621–718

    Google Scholar 

  44. Šesták J (2005) Science of heat and thermophysical measurements generalized approach to thermal analysis. Elsevier, Amsterdam

    Google Scholar 

  45. Šesták J (2005) Some historical aspects of thermal analysis: origins of Termanal, CalCon and ICTA. In: Klein E, Smrčková E, Šimon P (eds) Proceedings of international conference on thermal analysis “termanal”. Publishing House of the Slovak Technical University, Bratislava, pp 3–9; (1999) The history and future of thermal analysis; thermochemical and thermodynamic background. J Min Metall 35:367–377

    Google Scholar 

  46. Šesták J, Mareš JJ, Hubík P (2011) Historical roots and development of thermal analysis and calorimetry. In: Šesták J, Mareš JJ, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. Springer, Berlin, pp 347–370

    Google Scholar 

  47. Faktor MM, Hanks R (1967) Quantitative application of dynamic differential calorimetry. Part 1. Theoretical and experimental evaluation. Trans Faraday Soc 63:1122–1129; Part 2. Heats of formation of the group 3A arsenides. Trans Faraday Soc 63:1130–1135

    Google Scholar 

  48. Grey AP (1968) Simple generalized theory for analysis of dynamic thermal measurements. In: Porter RS, Johnson JF (eds) Analytical calorimetry, vol 1. Plenum Press, New York, p 209; (1974) Proceedings of 4th ICTA, “thermal analysis”, Akademiai Kiado, Budapest

    Google Scholar 

  49. Holba P, Šesták J, Bárta R (1976) Teorie a praxe DTA/DSC. (Theory and practice of DTA/DSC). Silikáty (Prague) 20:83–95 (in Czech); Šesták J, Holba P, Lombardi G (1977) Quantitative evaluation of thermal effects: theory and practice. Annali di Chimica (Roma) 67:73–87

    Google Scholar 

  50. Nevřiva M, Holba P, Šesták J (1976) Utilization of DTA for the determination of transformation heats. Silikaty (Prague) 29:33–9 (in Czech); (1974) On correct calorimetric measurements by means of DTA. In: Proceedings of 4th ICTA in Budapest, “thermal analysis”, Akademia Kiado, Budapest, pp 981–990; Holba P, Nevřiva M, Šesták J (1978) Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta 23:223–231; (1976) Thermal inertia accounts in DTA evaluation. In: Dollimore D (ed) Proceedings of 2nd ESAC, “thermal analysis”, Mc Millan, Salford, pp 33–37

    Google Scholar 

  51. Höhne GWH, Hemminger W, Flammersheim HJ (2003) Differential scanning calorimetry. Springer, Dordrecht; Brown ME, Gallagher PK (eds) (2008) Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam; Gabbott G (ed) (2008) Principles and application of thermal analysis. Blackwell, Oxford; Hemminger W, Höhne GWH (1979) Grundlagen der Kalorimetrie. Verlag Chemie, Weinheim; (1984) Calorimetry: fundamentals and practice Chemie – Deerfield Beach, FL

    Google Scholar 

  52. Svoboda H, Šesták J (1974) A new approach to DTA calibration by predetermined amount of Joule heat. In: The proceedings of 4th ICTA, thermal analysis, Akademia Kiado, Budapest, pp 726–731; Svoboda H, Sestak J (1973) Use of rectangular and triangular heat pulses in calorimetric calibration, “termanal” high tatras. In: Proceedings by Publishing House SVŠT, Bratislava 1973, pp 12–17 (in Czech)

    Google Scholar 

  53. Flex PDE6.19, Student version, A flexible solution system for partial differential equations © 1996–2011 FPDE Solution Inc. www.pdesolutions.com

  54. Lamé G, Clapeyron BP (1831) Mémoire sur la solidification par refroidissement d’un globe liquide. Ann Chimie Phys 47:250–256

    Google Scholar 

  55. Stefan J (1889) Über einige Probleme der Theorie der Wärmeleitung. Sitzungsber Wiener Akad Math Naturwiss Abt 2A(98):473–484

    Google Scholar 

  56. Reading M (1993) Modulated differential scanning calorimetry: a new way forward in materials characterization. Trends Polym Sci 1:248–253; Reading M, Elliot D, Hill VL (1993) A new approach to the calorimetric investigation of physical and chemical transitions. J Therm Anal 40:949–955; Reading M, Hourston DJ (eds) (2006 ) Modulated temperature differential scanning calorimetry: theoretical and practical applications in polymer characterisation. Springer, Berlin. ISBN 978-1-4020-3749-

    Google Scholar 

  57. Wunderlich B, Jin Y, Boller A (1994) Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta 238:277–293

    Article  CAS  Google Scholar 

  58. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate Thermochimica Acta 403:55–63; Minakov AA, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207

    Google Scholar 

  59. Šesták J (2012) Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Therm Anal Calorim. doi:0.1007/s10973-011-2089-1 (in press); (1963) Temperature effects on the kinetic data accuracy obtained by thermographic measurements under constant heating rate. Silikaty (Prague) 7:125–131 (in Czech)

Download references

Acknowledgments

This work has been carried out by NTC ZCU Pilsen under the support of the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, that is co-funded from the ERDF within the OP RDI program of the Ministry of Education, Youth and Sports and by the Grant Agency of the Czech Republic project No 13-21715S: Phenomenological thermodynamics and kinetics by thermal analysis applied to glasses and gels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Holba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holba, P., Šesták, J., Sedmidubský, D. (2012). Heat Transfer and Phase Transition in DTA Experiments. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_5

Download citation

Publish with us

Policies and ethics