Skip to main content

Neurodevices for the management of nervous system disorders have been recognized as most promising through the coming decades. Technological development is being spurred on as drugs and other standard therapies have reached diminishing returns. New data enabled by cutting-edge telemetric devices will spin off new business models, for example, in seizure rhythm management. Implantable neurostimulation devices already exist as adjunct therapy for intractable epilepsy, but paradoxically, age-old feedback control strategies remain largely unknown or underutilized in the field. In this chapter we outline strategies for intelligent feedback control of pathological oscillations. We review the state of the art in implant-able devices for epilepsy and the experimental evidence for improved performance via feedback control. Then we extend an existing body of work from open-loop to continuous feedback control of phase-based models of hypersynchronization. Conversion of the results to practical devices is explored via pseudostate vector reconstruction. We conclude by outlining key components of research for continued progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ward and M. Rise, Techniques for treating epilepsy by brain stimulation and drug infusion, U.S. Patent 5,713,923, March 13, 1996.

    Google Scholar 

  2. R. Fischell, D. Fischell and A. Upton, System for treatment of neurological disorders, U.S. Patent 6,016,449, October 27, 1997.

    Google Scholar 

  3. J. Zabara, Neurocybernetic prosthesis, U.S. Patent 4,702,254, December 30, 1985.

    Google Scholar 

  4. G. Worrell, R. Wharen, R. Goodman et al., Safety and evidence for efficacy of an implantable responsive neurostimulator (RNS®) for the treatment of medically intractable partial onset epilepsy in adults, Epilepsia 46(s8), 226, 2005.

    Article  Google Scholar 

  5. P. Betterton, personal communication, 2005.

    Google Scholar 

  6. PA. Tass, Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis, Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  7. PA. Tass, Desynchronizing double-pulse phase resetting and application to deep brain stimulation, Biological Cybernetics 85, 343–354, 2001.

    Article  Google Scholar 

  8. PA. Tass, Effective desynchronization with bipolar double-pulse stimulation, Physics Review E 66, 036226, 2002.

    Article  Google Scholar 

  9. PA. Tass, A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations, Biological Cybernetics 89, 81–88, 2003.

    Article  MATH  Google Scholar 

  10. PA. Tass and M. Majtanik, Long-term anti-kindling effects of desynchronizing brain stimulation: A theoretical study, Biological Cybernetics 94(1), 58–66, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Liss, Apparatus for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures and the like, U.S. Patent 3,850,161, April 9, 1973.

    Google Scholar 

  12. S.A. Chkhenkeli, Direct deep brain stimulation: A first step towards the feedback control of seizures, in Epilepsy as a Dynamic Disease, J. Milton and P. Jung (Eds.), Springer-Verlag, Berlin, 2003.

    Google Scholar 

  13. M. Nakagawa and D. Durand, Suppression of spontaneous epileptiform activity with applied currents, Brain Research 567(2), 241–247, 1991.

    Article  Google Scholar 

  14. S.J. Schiff, K. Jerger, D.H. Duong et al., Controlling chaos in the brain, Nature 370, 615–620, 1994.

    Article  Google Scholar 

  15. J. Lian, J. Shuai and D. Durand, Control of phase synchronization of neuronal activity in the rat hippocampus, Journal of Neural Engineering 1, 46–54, 2004.

    Article  Google Scholar 

  16. B.J. Gluckman, H. Nguyen, S.L. Weinstein et al., Adaptive electric field control of epileptic seizures, The Journal of Neuroscience 21(2), 590–600, 2001.

    Google Scholar 

  17. D.J. Mogul, Y. Li and M.E. Colpan, Using electrical stimulation and control feedback to modulate seizure activity in rat hippocampus, Epilepsia 46(s8), 331, 2005.

    Google Scholar 

  18. M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms, Physical Review E 70(041904), 1–11, 2004.

    Google Scholar 

  19. K. Tsakalis, Prediction and control of epileptic seizures: Coupled oscillator models. Presentation, February 2005.

    Google Scholar 

  20. M.W. Slutzky, P. Cvitanovic and D.J. Mogul, Manipulating epileptiform bursting in the rat hippocampus using chaos control and adaptive techniques, IEEE Transactions on Biomedical Engineering 5(5), 559–570, 2003.

    Article  Google Scholar 

  21. R. Larter, R. Worth and B. Speelman, Nonlinear dynamics in biochemical and biophysical systems: From enzyme kinetics to epilepsy, in Self-Organized Biological Dynamics and Nonlinear Control: Toward Understanding Complexity, Chaos and Emergent Function in Living Systems, J. Walleczek (Ed.), Cambridge University Press, Port Chester, NY, p. 51, 2001.

    Google Scholar 

  22. J.S. Ebersole and J. Milton, The electroencephalogram (EEG): A measure of neural synchrony, in Epilepsy as a Dynamic Disease, Springer-Verlag, Berlin, 2003.

    Google Scholar 

  23. J. Jefferys, Models and mechanisms of experimental epilepsies, Epilepsia 44(s12), 44–50, 2003.

    Article  Google Scholar 

  24. P. Suffczyn'ski, S. Kalitzin and F. Lopes da Silva, Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience 126(2), 467–484, 2004.

    Article  Google Scholar 

  25. P. Suffczyn'ski, S. Kalitzin and F. Lopes da Silva, A lumped model of thalamic oscillations, in Proceedings of Computational Neuroscience Meeting, Brugge, Belgium, 2000.

    Google Scholar 

  26. F. Wendling, F. Bartolomei, J.J. Bellanger et al., Epileptic fast activities can be explained by a model of impaired GABAergic dendritic inhibition, European Journal of Neuroscience 15(9), 1499–1508, 2002.

    Article  Google Scholar 

  27. C. Hauptmann, O. Popovych and P. Tass, Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: A computational study, Biological Cybernetics 93(6), 463–470, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Haken, Advanced Synergetics, Springer, Berlin, 1983.

    MATH  Google Scholar 

  29. L.G. Bleris et al., Towards embedded model predictive control for system-on-a-chip applications, Journal of Process Control 16, 255–264, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Echauz, J., Firpi, H., Georgoulas, G. (2009). Intelligent Control Strategies for Neurostimulation. In: Valavanis, K.P. (eds) Applications of Intelligent Control to Engineering Systems. Intelligent Systems, Control, and Automation: Science and Engineering, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3018-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3018-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3017-7

  • Online ISBN: 978-90-481-3018-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics