Skip to main content

Motion in Alternative Theories of Gravity

  • Chapter
  • First Online:
Mass and Motion in General Relativity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 162))

Abstract

Although general relativity (GR) passes all present experimental tests with flying colors, it remains important to study alternative theories of gravity for several theoretical and phenomenological reasons that we recall in these lecture notes. The various possible ways of modifying GR are presented, and we notably show that the motion of massive bodies may be changed even if one assumes that matter is minimally coupled to the metric as in GR. This is illustrated with the particular case of scalar-tensor theories of gravity, whose Fokker action is discussed, and we also mention the consequences of the no-hair theorem on the motion of black holes. The finite size of the bodies modifies their motion with respect to pointlike particles, and we give a simple argument showing that the corresponding effects are generically much larger in alternative theories than in GR. We also discuss possible modifications of Newtonian dynamics (MOND) at large distances, which have been proposed to avoid the dark matter hypothesis. We underline that all the previous classes of alternatives to GR may a priori be used to predict such a phenomenology, but that they generically involve several theoretical and experimental difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One needs to compute the integrals represented by the various diagrams to derive expression (6). See Ref. [41] for explicit diagrammatic calculations.

  2. 2.

    Two different (though related) meanings of “post-Keplerian” exist in the literature. We are here considering a post-Keplerian expansion in powers of v orbital 2 ∕ c 2, while keeping the full nonperturbative dependence in the gravitational self-energy Gm ∕ Rc 2. On the other hand, post-Keplerian deviations mean relativistic effects modifying the lowest-order Keplerian motion, like those described in Section 4.3. Only this latter meaning is used in GR, because its strong equivalence principle implies that the internal structure of a body does not influence its motion up to order \(\mathcal{O}(1/{c}^{10})\), as recalled in Section 5.

  3. 3.

    The precise definitions of these multipoles and their explicit expressions may be found for instance in Section 6 of Ref. [39].

  4. 4.

    These larger finite-size effects are due to the fact that a spin-0 scalar field can couple to the spherical inertia moment of a body, contrary to a spin-2 graviton. They should not be confused with the violation of the strong equivalence principle, which also occurs in scalar-tensor theories because all form factors m(φ), N(φ), … depend on the body’s self-energy. Regardless of its finite size, the motion of a self-gravitating body in a uniform exterior gravitational field depends thus on its internal structure.

  5. 5.

    See Section II.B of Ref. [30] for a critical discussion of various such mass-dependent models.

References

  1. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, R. Rattazzi, J. High Energy Phys. 10, 014 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  2. E.G. Adelberger, Class. Q. Grav. 18, 2397 (2001)

    Article  MATH  ADS  Google Scholar 

  3. Y. Aharonov, A. Komar, L. Susskind, Phys. Rev. 182, 1400 (1969)

    Article  ADS  Google Scholar 

  4. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, S.G. Turyshev, Phys. Rev. D 65, 082004 (2002)

    Article  ADS  Google Scholar 

  5. C. Armendáriz-Picón, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. C. Armendáriz-Picón, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  7. P. Astier et al. (The SNLS), Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  8. E. Babichev, V. Mukhanov, A. Vikman, J. High Energy Phys. 02, 101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Baessler, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, U. Schmidt, H.E. Swanson, Phys. Rev. Lett. 83, 003585 (1999)

    Article  ADS  Google Scholar 

  10. M. Bailes, S.M. Ord, H.S. Knight, A.W. Hotan, Astrophys. J. 595, L49 (2003)

    Article  ADS  Google Scholar 

  11. N.D.R. Bhat, M. Bailes, J.P.W. Verbiest, Phys. Rev. D 77, 124017 (2008)

    Article  ADS  Google Scholar 

  12. M. Bartelmann, P. Schneider, Phys. Rep. 340, 291 (2001)

    Article  MATH  ADS  Google Scholar 

  13. J.D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972); Phys. Rev. D 5, 1239 (1972)

    Google Scholar 

  14. J.D. Bekenstein, Phys. Rev. D 48, 3641 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  15. J.D. Bekenstein, Phys. Rev. D 70, 083509 (2004)

    Article  ADS  Google Scholar 

  16. J.D. Bekenstein, PoS JHW2004, 012 (2005)

    Google Scholar 

  17. J. Bekenstein, M. Milgrom, Astrophys. J. 286, 7 (1984)

    Article  ADS  Google Scholar 

  18. J.D. Bekenstein, R.H. Sanders, Astrophys. J. 429, 480 (1994)

    Article  ADS  Google Scholar 

  19. P.G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968)

    Article  Google Scholar 

  20. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  21. L. Blanchet, Class. Q. Grav. 24, 3529 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. L. Blanchet, Class. Q. Grav. 24, 3541 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. L. Blanchet, A. Le Tiec, Phys. Rev. D 78, 024031 (2008)

    Article  ADS  Google Scholar 

  24. L. Blanchet, A. Le Tiec, Phys. Rev. D 80, 023524 (2009)

    Article  ADS  Google Scholar 

  25. L. Blanchet, T. Damour, G. Esposito-Farèse, B.R. Iyer, Phys. Rev. D 71, 124004 (2005)

    Article  ADS  Google Scholar 

  26. C. Boehm, P. Fayet, J. Silk, Phys. Rev. D 69, 101302(R) (2004)

    Google Scholar 

  27. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. P. Breitenlohner, D. Maison, G.W. Gibbons, Commun. Math. Phys. 120, 295 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. J.-P. Bruneton, Phys. Rev. D 75, 085013 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. J.-P. Bruneton, G. Esposito-Farèse, Phys. Rev. D 76, 124012 (2007)

    Article  ADS  Google Scholar 

  31. M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, M.A. McLaughlin, M. Kramer, J.M. Sarkissian, F. Camilo, V. Kalogera, C. Kim, D.R. Lorimer, Nature 426, 531 (2003)

    Article  ADS  Google Scholar 

  32. B. Chauvineau, A.D.A.M. Spallicci, J.-D. Fournier, Class. Q. Grav. 22, S457 (2005)

    Article  MATH  ADS  Google Scholar 

  33. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  34. T.E. Chupp, R.J. Hoare, R.A. Loveman, E.R. Oteiza, J.M. Richardson, M.E. Wagshul, A.K. Thompson, Phys. Rev. Lett. 63, 1541 (1989)

    Article  ADS  Google Scholar 

  35. M.A. Clayton, arXiv:gr-qc/0104103v1 (2001)

    Google Scholar 

  36. T. Damour, in Gravitation and Quantizations, ed. by B. Julia, J. Zinn-Justin, Les Houches, Session LVII (Elsevier, Amsterdam, 1995), pp. 1–61

    Google Scholar 

  37. T. Damour, in Physics of Relativistic Objects in Compact Binaries: from Birth to Coalescence ed. by M. Colpi, P. Casella, V. Gorini, U. Moschella, A. Possenti, Astrophysics and Space Science Library 359 (Springer, Dordrecht and Canopus Publishing Lim., Bristol, 2009), pp. 1–41

    Google Scholar 

  38. T. Damour, F. Dyson, Nucl. Phys. B 480, 37 (1996)

    Article  ADS  Google Scholar 

  39. T. Damour, G. Esposito-Farèse, Class. Q. Grav. 9, 2093 (1992)

    Article  MATH  ADS  Google Scholar 

  40. T. Damour, G. Esposito-Farèse, Phys. Rev. Lett. 70, 2220 (1993)

    Article  ADS  Google Scholar 

  41. T. Damour, G. Esposito-Farèse, Phys. Rev. D 53, 5541 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Damour, G. Esposito-Farèse, Phys. Rev. D 54, 1474 (1996)

    Article  ADS  Google Scholar 

  43. T. Damour, G. Esposito-Farèse, Phys. Rev. D 58, 042001 (1998)

    Article  ADS  Google Scholar 

  44. T. Damour, G. Esposito-Farèse (unpublished)

    Google Scholar 

  45. T. Damour, A.M. Polyakov, Nucl. Phys. B 423, 532 (1994); Gen. Rel. Grav. 26, 1171 (1994)

    Google Scholar 

  46. T. Damour, G. Schäfer, Gen. Rel. Grav. 17, 879 (1985)

    MATH  ADS  Google Scholar 

  47. T. Damour, A. Vilenkin, Phys. Rev. D 53, 2981 (1996)

    Article  ADS  Google Scholar 

  48. T. Damour, F. Piazza, G. Veneziano, Phys. Rev. D 66, 046007 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  49. C. Deffayet, R.P. Woodard, J. Cosm. Astropart. Phys. 0908, 23 (2009)

    Article  ADS  Google Scholar 

  50. S. Deser, R.P. Woodard, Phys. Rev. Lett. 99,111301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, London, 1923)

    MATH  Google Scholar 

  52. S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004), contribution by T. Damour entitled Experimental Tests of Gravitational Theories, p. 186

    Google Scholar 

  53. C. Eling, T. Jacobson, D. Mattingly, arXiv:gr-qc/0410001v2 (2005)

    Google Scholar 

  54. J.W. Elliott, G.D. Moore, H. Stoica, J. High Energy Phys. 08, 066 (2005)

    Article  ADS  Google Scholar 

  55. G. Esposito-Farèse, in Proc.10th Marcel Grossmann Mtg, Rio de Janeiro 20–26 July 2003, ed. by M. Novello, S. Perez Bergliaffa, R. Ruffini (World Scientific, Singapore, 2006), p. 647

    Google Scholar 

  56. M. Fierz, Helv. Phys. Acta 29, 128 (1956)

    MATH  MathSciNet  Google Scholar 

  57. B. Fort, Y. Mellier, Astron. Astrophys. Rev. 5, 239 (1994)

    Article  ADS  Google Scholar 

  58. B.Z. Foster, T. Jacobson, Phys. Rev. D 73, 064015 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  59. Y. Fujii, A. Iwamoto, T. Fukahori, T. Ohnuki, M. Nakagawa, H. Hidaka, Y. Oura, P. Möller, Nucl. Phys. B 573, 377 (2000)

    Article  ADS  Google Scholar 

  60. G.W. Gibbons, in The Physical Universe: The Interface Between Cosmology, Astrophysics and Particle Physics, ed. by J.D. Barrow, A.B. Henriques, M.T.V.T. Lago, M.S. Longair, Lecture Notes in Physics 383 (Berlin, Springer Verlag, 1991) p. 110

    Google Scholar 

  61. G.W. Gibbons, M.E. Ortiz, F. Ruiz Ruiz, Phys. Lett. B 240, 50 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  62. W.D. Goldberger, I.Z. Rothstein, Phys. Rev. D 73, 104029 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  63. S.W. Hawking, Commun. Math. Phys. 25, 167 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  64. E. Hayashi, J.F. Navarro, C. Power, A. Jenkins, C.S. Frenk, S.D.M. White, V. Springel, J. Stadel, T.R. Quinn, Mon. Not. R. Astron. Soc. 355, 794 (2004)

    Article  ADS  Google Scholar 

  65. T. Jacobson, PoS QG-PH, 020 (2007)

    Google Scholar 

  66. T. Jacobson, D. Mattingly, Phys. Rev. D 64, 024028 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  67. T. Jacobson, D. Mattingly, Phys. Rev. D 70, 024003 (2004)

    Article  ADS  Google Scholar 

  68. M.-T. Jaekel, S. Reynaud, Class. Q. Grav. 22, 2135 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  69. M.-T. Jaekel, S. Reynaud, Class. Q. Grav. 23, 777 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. M.-T. Jaekel, S. Reynaud, Class. Q. Grav. 23, 7561 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  71. P. Jordan, Z. Phys. 157, 112 (1959)

    Article  ADS  Google Scholar 

  72. R.A. Knop et al. (Supernova Cosmology Project), Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  73. M. Kramer, I.H. Stairs, R.N. Manchester, M.A. McLaughlin, A.G. Lyne, R.D. Ferdman, M. Burgay, D.R. Lorimer, A. Possenti, N. D’Amico, J.M. Sarkissian, G.B. Hobbs, J.E. Reynolds, P.C.C. Freire, F. Camilo, Science 314, 97 (2006)

    Article  ADS  Google Scholar 

  74. C. Lämmerzahl, O. Preuss, H. Dittus, arXiv:gr-qc/0604052v1 (2006)

    Google Scholar 

  75. S.K. Lamoreaux, J.P. Jacobs, B.R. Heckel, F.J. Raab, E.N. Fortson, Phys. Rev. Lett. 57, 3125 (1986)

    Article  ADS  Google Scholar 

  76. A.G. Lyne, M. Burgay, M. Kramer, A. Possenti, R.N. Manchester, F. Camilo, M.A. McLaughlin, D.R. Lorimer, N. D’Amico, B.C. Joshi, J. Reynolds, P.C.C. Freire, Science 303, 1153 (2004)

    Article  ADS  Google Scholar 

  77. S.S. McGaugh, Phys. Rev. Lett. 95, 171302 (2005)

    Article  ADS  Google Scholar 

  78. Y. Mellier, Ann. Rev. Astron. Astrophys. 37, 127 (1999)

    Article  ADS  Google Scholar 

  79. M. Milgrom, Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  80. M. Milgrom, Ann. Phys. (N.Y.) 229, 384 (1994)

    Google Scholar 

  81. M. Milgrom, Phys. Lett. A 253, 273 (1999)

    Article  ADS  Google Scholar 

  82. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  83. G.D. Moore, A.E. Nelson, J. High Energy Phys. 09, 023 (2001)

    Article  ADS  Google Scholar 

  84. W.-T. Ni, Phys. Rev. D 7, 2880 (1973)

    Article  ADS  Google Scholar 

  85. M.M. Nieto, S.G. Turyshev, Class. Q. Grav. 21, 4005 (2004)

    Article  MATH  ADS  Google Scholar 

  86. K. Nordtvedt, Astrophys. J. 161, 1059 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  87. K. Nordtvedt, Phys. Rev. D 49, 5165 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  88. M. Ostrogradski, Mem. Ac. St. Petersbourg Rev. VI 4, 385 (1850)

    Google Scholar 

  89. J.D. Prestage, J.J. Bollinger, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 54, 2387 (1985)

    Article  ADS  Google Scholar 

  90. A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, P. Challis, A.V. Filippenko, S. Jha, W. Li, R. Chornock, R.P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Giavalisco, C.C. Steidel, N. Benitez, Z. Tsvetanov, Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  91. V.C. Rubin, N. Thonnard, W.K. Ford Jr., Astrophys. J. 225, L107 (1978)

    Article  ADS  Google Scholar 

  92. C. Salomon, C. Veillet, in 1st Symp. on the Utilization of the International Space Station, Darmstadt 30 September–2 October 1996, ESA SP 385 (ESA, Noordwijk, 1997), p. 397

    Google Scholar 

  93. R.H. Sanders, Astrophys. J. 480, 492 (1997)

    Article  ADS  Google Scholar 

  94. R.H. Sanders, Mon. Not. R. Astron. Soc. 363, 459 (2005)

    ADS  Google Scholar 

  95. R.H. Sanders, S.S. McGaugh, Ann. Rev. Astron. Astrophys. 40, 263 (2002)

    Article  ADS  Google Scholar 

  96. I.I. Shapiro, in Proc. 12th General Relativity and Gravitation Int. Conf., ed. by N. Ashby, D.F. Bartlett, W. Wyss (Cambridge University Press, Cambridge, 1990), p. 313

    Google Scholar 

  97. S.S. Shapiro, J.L. Davis, D.E. Lebach, J.S. Gregory, Phys. Rev. Lett. 92, 121101 (2004)

    Article  ADS  Google Scholar 

  98. A.I. Shlyakhter, Nature 264, 340 (1976)

    Article  ADS  Google Scholar 

  99. J.Z. Simon, Phys. Rev. D 41, 3720 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  100. M.E. Soussa, R.P. Woodard, Class. Q. Grav. 20, 2737 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  101. D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  102. D.N. Spergel, R. Bean, O. Doré, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H.V. Peiris, L. Verde, M. Halpern, R.S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  103. I.H. Stairs, S.E. Thorsett, J.H. Taylor, A. Wolszczan, Astrophys. J. 581, 501 (2002)

    Article  ADS  Google Scholar 

  104. C. Talmadge, J.P. Berthias, R.W. Hellings, E.M. Standish, Phys. Rev. Lett. 61, 1159 (1988)

    Article  ADS  Google Scholar 

  105. J.L. Tonry et al. (Supernova Search Team), Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  106. R.B. Tully, J.R. Fisher, Astron. Astrophys. 54, 661 (1977)

    ADS  Google Scholar 

  107. S.G. Turyshev, V.T. Toth, L.R. Kellogg, E.L. Lau, K.J. Lee, Int. J. Mod. Phys. D 15, 1 (2006)

    Article  MATH  ADS  Google Scholar 

  108. J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  109. R.F.C. Vessot, M.W. Levine, Gen. Rel. Grav. 10, 181 (1978)

    Article  ADS  Google Scholar 

  110. R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffman, G.U. Nystrom, B.F. Farrel, R. Decher, P.B. Eby, C.R. Baugher, J.W. Watts, D.L. Teuber, F.D. Wills, Phys. Rev. Lett. 45, 2081 (1980)

    Article  ADS  Google Scholar 

  111. R. Wagoner, Phys. Rev. D 1, 3209 (1970)

    Article  ADS  Google Scholar 

  112. J.M. Weisberg, J.H. Taylor, ASP Conf. Proc. 302, 93 (2003)

    ADS  Google Scholar 

  113. C.M. Will, Theory and Experiment in Gravitational Physics, revised edition (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  114. C.M. Will, Living Rev. Rel. 9, URL: http://www.livingreviews.org/lrr-2006-3

  115. C.M. Will, K. Nordtvedt, Astrophys. J. 177, 757 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  116. J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93, 261101 (2004)

    Article  ADS  Google Scholar 

  117. R.P. Woodward, in The Invisible Universe: Dark Matter and Dark Energy, ed. by L. Papantonoupoulos, Lect. Notes Phys. 720 (Springer, Berlin, 2007), p. 403

    Google Scholar 

  118. T.G. Zlosnik, P.G. Ferreira, G.D. Starkman, Phys. Rev. D 75, 044017 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Esposito-Farèse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Esposito-Farèse, G. (2009). Motion in Alternative Theories of Gravity. In: Blanchet, L., Spallicci, A., Whiting, B. (eds) Mass and Motion in General Relativity. Fundamental Theories of Physics, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3015-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3015-3_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3014-6

  • Online ISBN: 978-90-481-3015-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics